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It is not surprising to encounter not just a few, but many 
individuals who have been entrusted with continuous 
improvement responsibilities who cannot define an in-control 
process, who cannot accurately distinguish between process 
control and process capability, who cannot distinguish 
between process capability and product capability, who do not 
understand the basic structure of a control chart, who do not 
have practical knowledge of the fundamental theorem of 
statistical process control, and who do not understand the 
significance and relative importance of various signals of 
special causes of variation. 

Robert Hoy er & Wayne Ellis, 1996 
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Preface 

This guidebook is about using measurements to manage and improve software processes. It 
shows how quality characteristics of software products and processes can be quantified, 
plotted, and analyzed, so that the performance of activities that produce the products can be 
predicted, controlled, and guided to achieve business and technical goals. Although many of 
the principles and methods described in the guidebook are applicable to individual projects, 
the primary focus is on the enduring issues that enable organizations to improve not just 
today's performance, but the long-term success and profitability of their operations. 

If you are a software manager or practitioner who has responsibilities for quality or 
performance that extend beyond just the project of the day, and if you are experienced in 
defining, collecting, and using measurements to plan and manage projects, then this 
guidebook is for you. It will start you on the road to using measurement data to control and 
improve process performance. Not only will the discussions here introduce you to important 
concepts, but they will also point you to additional things that you will ultimately want to 
know to fully implement and use the power of quantitative information. 

On the other hand, if your organization does not yet have basic measurement processes in 
place, you should make establishing measures for planning and managing projects your first 
priority. Handbooks such as Practical Software Measurement: A Guide to Objective Program 
Insight [JLC 96] and Goal-Driven Software Measurement [Park 96a] make excellent starting 
points, as do the examples and advice found in books by people such as Watts Humphrey 
and Robert Grady [Humphrey 89, Grady 87, Grady 92]. 

The discussions in this guidebook will not attempt to teach you all that you need to know 
about using measurements to manage and improve software processes. Nor will they 
attempt to teach you everything there is to know about using control charts and other 
empirical tools of quality and process improvement. The mechanics associated with these 
tools are explained adequately elsewhere, and we provide numerous pointers to books that 
provide instruction on these subjects. Instead, this guidebook focuses on things that we 
believe to be more important—the concepts and issues that lie behind the empirical 
(statistical) methods, and the steps associated with effectively implementing and using the 
methods to manage and improve software processes. 

This document, then, is a guidebook in the sense that it describes and illustrates the best 
practices that we can currently identify for gathering and using quantitative data to help 
manage and improve software processes. Everything in this guidebook has its roots in 
experience: often that of the authors, at times that of others. Much of the experience comes 
from software settings, while other lessons have been drawn from more physically oriented 
environments. Although some of the numerical examples are composed rather than factual, 
we have tried to ensure that they represent reasonable extensions of practices that have 
been demonstrated to be successful, if not in software settings, at least in other 
environments. 

CMU/SEI-97-HB-003 xi 



Although this guidebook emphasizes the principles of statistical quality control (SQC), we 
recognize that these principles have received little use as of yet in software organizations. 
Nevertheless, we refuse to let the current state of software measurement stop us from 
promoting their use. The benefits of the empirical methods associated with SQC have been 
so evident in other development, production, and service activities that it would be foolish to 
ignore their potential for improving software products and services. 

We recognize that there is much more to be said about the use of measurements and 
statistical methods for managing and improving processes than this guidebook now 
addresses. We also recognize that, in selecting the principal topics, we may be guilty of 
overemphasizing control charts while underemphasizing the fact-finding and improvement 
activities that must take place once problems and improvement opportunities are detected. 
The latter subjects are all grist for future versions of the guidebook. For now, though, the 
focus is on the initial steps of acquiring and using quantitative information in ways that can 
help you to reliably identify the problems and opportunities present in the processes you 
operate, so that you can use the results to guide your management and improvement 
actions. We believe that the guidebook provides ideas and methods that you will find useful, 
and we hope that it will encourage you and others to begin applying the concepts that it 

explains and illustrates. 
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Measuring for Process Management and Improvement 

Abstract: This guidebook shows how well-established principles and 
methods for evaluating and controlling process performance can be applied 
in software settings to help achieve an organization's business and technical 
goals. Although the concepts that are illustrated are often applicable to 
individual projects, the primary focus is on the enduring issues that enable 
organizations to improve not just today's performance, but the long-term 
success and profitability of their business and technical endeavors. 

1      The Role of Measurement In Process Management 

The central problem of management in all its aspects, 
including planning, procurement, manufacturing, research, 
sales, personnel, accounting, and law, is to understand better 
the meaning of variation, and to extract the information 
contained in variation. 

Lloyd S. Nelson, as quoted 
by Deming [Deming 86a] 

Every organization asks the question, "Are we achieving the results we desire?" This gets 
couched in many ways, such as, "Are we meeting our business objectives? Are our custom- 
ers satisfied with our product and services? Are we earning a fair return on our investment? 
Can we reduce the cost of producing the product or service? How can we improve the 
response to our customers' needs or increase the functionality of our products? How can we 
improve our competitive position? Are we achieving the growth required for survival?" 

The answers to questions like these are rooted in an organization's basic makeup, its overall 
philosophy, its people, its management, and the facilities and operational processes used by 
the organization to deliver its products or services. It is the operational processes that 
concern us in this guidebook. 

1.1     Why Measure? 

Without the right information, you're just another person with 
an opinion. 

— Tracy O'Rourke, CEO of Allen-Bradley 

Advances in technology are continually increasing the demand for software that is larger, 
more robust, and more reliable over ever-widening ranges of application. The demands on 
_________ . 



software management are increasing correspondingly. Software developers and 
maintainers—managers and technical staff alike—are repeatedly confronted with new 
technologies, more competitive markets, increased competition for experienced personnel, 
and demands for faster responsiveness [Card 95]. At the same time, they continue to be 
concerned about open-ended requirements, uncontrolled changes, insufficient testing, 
inadequate training, arbitrary schedules, insufficient funding, and issues related to 
standards, product reliability, and product suitability. 

Software measurement by itself cannot solve these problems, but it can clarify and focus 
your understanding of them. Moreover, when done properly, sequential measurements of 
quality attributes of products and processes can provide an effective foundation for initiating 
and managing process improvement activities. 

The success of any software organization is contingent on being able to make predictions 
and commitments relative to the products it produces. Effective measurement processes 
help software groups succeed by enabling them to understand their capabilities, so that they 
can develop achievable plans for producing and delivering products and services. 
Measurements also enable people to detect trends and to anticipate problems, thus 
providing better control of costs, reducing risks, improving quality, and ensuring that 
business objectives are achieved. 

In short, measurement methods that identify important events and trends and that effectively 
separate signals from noise are invaluable in guiding software organizations to informed 
decisions. 

1.2     Process Measures Are Driven by Goals and Issues 
For measurement activities to be cost effective, they must be designed and targeted to 
support the business goals of your organization and provide effective, economical 
information for decision making. This is not as simple and straightforward as it may sound. 
One of the dangers in enterprises as complex as software development and support is that 
there are potentially so many things to measure that we are easily overwhelmed by 
opportunities [Park 96a]. 

Experience has taught us that we must identify the critical factors that determine whether or 
not we will be successful in meeting our goals. These critical factors are often associated 
with issues. Issues, in turn, relate to risks that threaten our ability to meet goals, 
responsibilities, or commitments. Goals and issues serve to identify and focus the 
measurements needed to quantify the status and performance of software processes. 

To help address business goals, we can usefully view software management functions as 
falling into three broad classes—project management, process management, and product 
engineering. These management functions address different concerns, each with its own 
objectives and issues. For example: 
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• project management. The objectives of software project management are 
to set and meet achievable commitments regarding cost, schedule, quality, 
and function delivered—as they apply to individual development or 
maintenance projects. The key management issues are those that appear 
to jeopardize these commitments. Software project management is 
interested primarily in creating achievable plans and in tracking the status 
and progress of its products relative to its plans and commitments. 

• process management. The objectives of process management are to 
ensure that the processes within the organization are performing as 
expected, to ensure that defined processes are being followed, and to make 
improvements to the processes so as to meet business objectives (e.g., 
lowering risks associated with commitments and improving the ability to 
produce quality products). 

• product engineering. The objectives of product engineering are to ensure 
customer acceptance of and satisfaction with the product. The issues of 
greatest concern relate primarily to the physical and dynamic attributes of 
the product—architecture, producibility, reliability, usability, responsiveness, 
stability, performance, and so forth. Information about these attributes and 
customer satisfaction is important to assessing the attainment of product 
engineering goals. 

The kinds of data that are needed to achieve these objectives can differ significantly across 
these three management functions. Moreover, there are many interactions among the 
functions in most software organizations. In many cases, these interactions lead to 
conflicting demands that must be managed. In addition, various organizational entities- 
corporate, division, program, staff, project, and functional groups—often have different 
goals, together with differing issues, perspectives, and interests, even when sharing the 
same overall business goals. This frequently leads to differing measurement needs and 
priorities. But whatever the priorities, the business goals, objectives, strategies, and plans 
for all organizations are formed around the fundamental objectives of 

• providing competitive products or services in terms of functionality, time to 
market, quality, and cost 

• meeting commitments to customers with respect to products and services 

Success in meeting commitments while achieving or exceeding goals for functionality, 
quality, cost, and time to market implies a need to ensure that commitments are achievable. 
This in turn implies a need to predict outcomes and evaluate risks. 

The processes that software organizations use to produce products and services have 
critical roles in the execution of strategies and plans aimed at these objectives. 
Organizations that can control their processes are able to predict the characteristics of their 
products and services, predict their costs and schedules, and improve the effectiveness, 
efficiency, and profitability of their business and technical operations. 
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For example, if our business goals are based on function, cost, time to market, and quality, 
we can identify both project and process issues (concerns) that relate to achieving these 
goals. Process performance can then be quantified by measuring attributes of products 
produced by our processes as well as by measuring process attributes directly. Figure 1-1 
lists some typical business goals that often concern us and relates these goals to 
corresponding project and process issues and examples of attributes that can be measured 
to assess the performance of a process with respect to these issues. 

Business 
Goals 

Project Issues Process Issues Measurable Product and 
Process Attributes 

increase 
function 

product growth 

product stability 

product 
conformance 

number of requirements 

product size 

product complexity 

rates of change 

% nonconforming 

reduce cost budgets 

expenditure 
rates 

efficiency 

productivity 

rework 

product size 

product complexity 

effort 

number of changes 

requirements stability 

reduce the 
time to 
market 

schedule 

progress 

production rate 

responsiveness 

elapsed time, normalized 
for product characteristics 

improve 
product 
quality 

product 
performance 

product 
correctness 

product 
reliability 

predictability 

problem 
recognition 

root cause 
analysis 

number of defects 
introduced 

effectiveness of defect 
detection activities 

Figure 1 -1:  Business Goals, Project and Process Issues, and 
Related Measurable Attributes 

Measurements of attributes like those shown in column four of Figure 1-1 are important not 
just because they can be used to describe products and processes, but because they can 
be used to control the processes that produce the products, thus making future process 
performance predictable. Measurements of product and process attributes can also be used 
to quantify process performance and guide us in making process improvements. This in turn 
helps keep our operations competitive and profitable. 

In addition to product and process attributes like those listed in column four of Figure 1-1, 
there are two properties of the process itself that are important to successfully achieving 
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business goals: process stability and process capability. These properties are orthogonal to 

all measures of process and product attributes. 

Process stability, as we shall see shortly, lies at the heart of all process management and 
process improvement efforts. It is what enables us to act as if results are repeatable. 
Process stability lets us predict future performance and prepare achievable plans. It also 
provides a basis for separating signal from noise, so that departures from stability can be 
recognized and become the basis for effective control and improvement actions. 

If a process is in statistical control, and if a sufficiently large proportion of the results fall 
within the specification limits, the process is termed capable. Thus a capable process is a 
stable process whose performance satisfies customer requirements. 

Stability and capability will be described further in Chapter 2 and illustrated in greater detail 
in Chapter 5. For now, we simply point out that assessments of process stability and 
process capability are obtained by measuring attributes of product and process quality and 
analyzing the variability and central tendency in the measured results. The measures that 
we use are the same ones that we use when quantifying business-related issues like those 
listed in Figure 1-1. We also use the same measures, together with data that characterize 
the resources used by the processes, to quantify and analyze issues associated with 
process compliance and process improvement. 

Because of the multiplicity of goals, issues, processes, and perspectives within any 
organization, it makes little sense to attempt to lay out detailed instructions for measuring all 
conceivable product and process attributes. Instead, this guidebook focuses on the issues of 
process management and on assembling guidelines and advice for intelligently using 
measures to control and improve the processes that exist within software organizations. 

1.3     What Is a Software Process? 
The term "process" means different things to different people. So it is important to clearly 
define what we mean when we use the word, especially in the context of a software 
development or support environment. 

A process can be defined as the logical organization of people, 
materials, energy, equipment, and procedures into work 
activities designed to produce a specified end result. 

Gabriel Pall, 1987 

This definition is illustrated in Figure 1-2. It differs from the definitions of process and 
software process given in the Capability Maturity Modelsm (CMMsm) for Software1 in that it 

1CMM and Capability Maturity Model are service marks of Carnegie Mellon University. 
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includes people, materials, energy, and equipment within the scope of process. Version 1.1 
of the CMM, by way of contrast, views a process as a "sequence of steps" performed by 
people with the aid of tools and equipment to transform raw material into a product [Paulk 

93b, Paulk 95]. 

Requirements 
Ideas .—K 

Time N 

People     Material  Energy Equipment Procedures 

Work activities Products 
& 

Services 

Figure 1-2:  Definition of Process 

Including people, 
materials, energy, 
and tools within the 
concept of process 
becomes important 
when we begin to 
apply the principles 
of statistical process 
control to improve 
process performance 
and process capabil- 
ity. Here we use 
measures of variabil- 
ity to identify opportunities for improving the quality of products and the capability of 
processes. When searching for causes of unusual variation, it would be a mistake to exclude 
people, materials, energy, and tools from the scope of the investigation. This view of 
"process," as enunciated by Pall, has been at the very heart of statistical process control 
since its founding in the 1920s [Shewhart 31, Western Electric 58, Juran 88]. 

In keeping with the broad view of process, we use the term software process in this 
guidebook to refer not just to an organization's overall software process, but to any process 
or subprocess used by a software project or organization. In fact, a good case can be made 
that it is only at subprocess levels that true process management and improvement can take 
place. Thus, readers should view the concept of software process as applying to any identifi- 
able activity that is undertaken to produce or support a software product or service. This 
includes planning, estimating, designing, coding, testing, inspecting, reviewing, measuring, 
and controlling, as well as the subtasks and activities that comprise these undertakings. 

1.4    What Is Software Process Management? 
Software process management is about successfully managing the work processes 
associated with developing, maintaining, and supporting software products and software- 
intensive systems. By successful management, we mean that the products and services 
produced by the processes conform fully to both internal and external customer 
requirements, and that they meet the business objectives of the organization responsible for 
producing the products. 

The concept of process management is founded on the principles of statistical process 
control. These principles hold that by establishing and sustaining stable levels of variability, 
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processes will yield predictable results. We can then say that the processes are under 

statistical control. This was first enunciated by Walter Shewhart: 

A phenomenon will be said tobe controlled when, through the 
use of past experience, we can predict, at least within limits, 
how the phenomenon may be expected to vary in the future. 

Walter A. Shewhart, 1931 

Predictable results should not be construed to mean identical results. Results always vary; 
but when a process is under statistical control, they will vary within predictable limits. If the 
results of a process vary unexpectedly—whether randomly or systematically—the process is 
not under control, and some of the observed results will have assignable causes. These 
causes must be identified and corrected before stability and predictability can be achieved. 

Controlled processes are stable processes, and stable processes enable you to predict 
results. This in turn enables you to prepare achievable plans, meet cost estimates and 
scheduling commitments, and deliver required product functionality and quality with 
acceptable and reasonable consistency. If a controlled process is not capable of meeting 
customer requirements or other business objectives, the process must be improved or 

retargeted. 

At the individual level then, the objective of software process management is to ensure that 
the processes you operate or supervise are predictable, meet customer needs, and (where 
appropriate) are continually being improved. From the larger, organizational perspective, the 
objective of process management is to ensure that the same holds true for every process 
within the organization. 

1.5     Responsibilities and Objectives of Software Process 
Management 

In this section, we identify four key responsibilities of software process management and 
show how they relate to the responsibilities of project management. Our discussion of the 
activities and issues associated with the responsibilities will be neither all encompassing nor 
definitive, but it will provide a starting point from which measurement guidelines can be 
developed in something more substantial than just abstract terms. 

There are four responsibilities that are central to process management: 

• Define the process. 

• Measure the process. 

• Control the process (ensure that variability is stable so that results are 
predictable). 

• Improve the process. 
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In contrast, project management is responsible for seeing that a software product is 
developed according to a plan and that the plan is feasible. Thus, the principal objectives of 
project management are to set and meet achievable commitments with respect to cost, 
schedule, function delivered, and time to market. But without the underlying process 
management activities, project managers assume significant risk in both setting and meeting 

these commitments. 

The four responsibilities of process management are shown as boxes in Figure 1-3. 
Execution of the process is depicted with a different shape because execution is not a 
process management responsibility. Rather, it is an inherent responsibility of project 
management, whether performed by a software developer or a software maintainer. People 
responsible for process management may have project management responsibilities as well, 
and project managers may implicitly assume process management responsibility for 

processes that they define and use. 

^ 

Improve    Bä-~«^ 
Process    W~   ^^*v. 

Define        1 
Process     I 

rVintrnl        M^ Measure    i 
Process    ^^ 

f Execute    \ y" 
I   Process     K 

Process     1 

Figure 1 -3:  The Four Key Responsibilities of Process Management 

A concept of process ownership is implicit in Figure 1-3. Responsibility for this ownership 
lies with the function of process management. This is especially so whenever processes 
cross organizational boundaries or involve multiple organizational entities. Process 
ownership includes responsibilities for process design, for establishing and implementing 
mechanisms for measuring the process, and for taking corrective action where necessary 

[Pall 87]. 

The following paragraphs outline the four key responsibilities of process management. 

Define the Process 
Defining a software process creates the disciplined and structured environment required for 
controlling and improving the process. Management's responsibility to define each process 
inherently includes responsibilities for implementing and sustaining the process. The key 
objectives associated with defining, implementing, and sustaining are 
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• Design processes that can meet or support business and technical 
objectives. 

• Identify and define the issues, models, and measures that relate to the 
performance of the processes. 

• Provide the infrastructures (the set of methods, people, and practices) that 
are needed to support software activities. 

• Ensure that the software organization has the ability to execute and sustain 
the processes (skills, training, tools, facilities, and funds). 

Measure the Process 
Measurements are the basis for detecting deviations from acceptable performance. They 
are also the basis for identifying opportunities for process improvement. The key objectives 
of process measurement are to 

• Collect data that measure the performance of each process. 

• Analyze the performance of each process. 

• Retain and use the data to 
- assess process stability and capability 
- interpret the results of observations and analyses 
- predict future costs and performance 
- provide baselines and benchmarks 
- plot trends 
- identify opportunities for improvement 

Control the Process 

An adequate science of control for management should take 
into account the fact that measurements of phenomena in both 
social and natural science for the most part obey neither 
deterministic nor statistical laws, until assignable causes of 
variability have been found and removed. 

Walter A. Shewhart, 1943 

Controlling a process means keeping the process within its normal (inherent) performance 
boundaries—that is, making the process behave consistently. This involves 

• measurement: obtaining information about process performance 

• detection: analyzing the information to identify variations in the process 
that are due to assignable causes 
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• correction: taking steps to remove variation due to assignable causes from 
the process and to remove the results of process drift from the product [Pall 
87] 

To say this another way, the three key actions needed to establish and maintain control of a 

software process are as follows: 

1. Determine whether or not the process is under control (i.e., stable with 
respect to the inherent variability of measured performance). 

2. Identify performance variations that are caused by process anomalies 
(assignable causes). 

3. Eliminate the sources of assignable causes so as to stabilize the process. 

Once a process is under control, sustaining activities must be undertaken to forestall the 
effects of entropy. Without sustaining activities, processes can easily fall victim to the forces 
of ad hoc change or disuse and deteriorate to out-of-control states. This requires reinforcing 
the use of defined processes through continuing management oversight, benchmarking, and 
process assessments. 

Improve the Process 
Even though a process may be defined and under control, it may not be capable of 
producing products that meet customer needs or organizational objectives. For most 
organizations, processes must be technologically competitive, adaptable, and timely, and 
they must produce products that consistently meet customer and business needs. Moreover, 
resources must be available and capable of performing and supporting the processes. 
Processes can be improved by making changes that improve their existing capabilities or by 
replacing existing subprocesses with others that are more effective or efficient. In either 
case, the process improvement objectives of an organization are to 

• Understand the characteristics of existing processes and the factors that 
affect process capability. 

• Plan, justify, and implement actions that will modify the processes so as to 
better meet business needs. 

• Assess the impacts and benefits gained, and compare these to the costs of 
changes made to the processes. 
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1.6    The Relationship of Process Management to Project 
Management 

Figure 1-4 extends the process management model depicted in Figure 1-3. It illustrates the 
relationships between process management and project management responsibilities and 
shows how measurement activities relate to these responsibilities. 

Process 
Management 

Program/Project 
Management 

Figure 1 -4:  The Relationship Between Process Management and Project Management 

As Figure 1-4 indicates, a software project team produces products based on three primary 
ingredients: product requirements, a project plan, and a defined software process. It follows, 
then, that project management's use of measurement data will be guided by its needs to 

• identify and characterize requirements 

• prepare a plan that lays out achievable objectives 

• implement the plan 

• track the status and progress of work performed with respect to the goals 
laid out in the project plan2 

Process management, on the other hand, uses the same data and other related 
measurements to control and improve the software process itself. This means that 

2Examples of measurement activities associated with software project management are described in 
Practical Software Measurement: A Guide to Objective Program Insight [JLC 96]. 
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organizations can use a common framework for establishing and sustaining the 
measurement activities that provide the data for both management functions. 

1.7     Integrating Measurement with Software Process Management 
Figure 1-5 extends the basic process management model again, but in a way that is 
different from that in Figure 1-4. It shows the relationships between process management 
responsibilities and the planning and applying activities of the measurement process. (The 
measurement activities are highlighted.) The interactions between measurement and 
process management are summarized in the paragraphs that follow the figure. 

Process 
Improvements 

Customer Requirements 
& Business Needs 

Process 
Definitions roduct 

Measurements 

Figure   1 -5:  Measurement Activities and Their Relationship to the 
Key Responsibilities of Process Management 

1. Define the process. A process is an organized combination of people, 
materials, energy, equipment, and procedures engaged in producing a 
specified end result—often a product or service. Prior to selecting and 
implementing measures, each contributing element of the process must be 
identified, and a thorough understanding of the process operation and 
objectives must be attained by those engaged in process management. 
Data-flow diagrams and control-flow diagrams can be useful tools for 
documenting and communicating understandable and usable (i.e., 
operational) definitions. 

2. Plan the measures. Measurement planning is based on an understanding 
of the defined (or implicit) software process. Here the product-, process-, 
and resource-related issues and attributes are identified; measures of 
product and process quality are selected and defined; and provisions for 
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collecting and using the measurements to assess and track process 
performance are integrated into the software process. 

3. Execute the software process. Processes are executed by the software 
organization. The product, process, and resource attributes that were 
identified are measured during and at the completion of each software 
process. 

4. Apply the measures. Applying measures puts to use the measurements 
that are obtained while executing the software process. Data from the 
software process and from products produced by the process are 
collected, retained, and analyzed so that they can be used to control and 
improve the process. 

5. Control the process. If measurements of product or performance 
attributes indicate that the process varies in unexpected or unpredictable 
ways, actions must be taken to remove assignable causes, stabilize the 
variability, and (if appropriate) return the process to its natural level of 
performance. 

6. Improve the process. Once measurements indicate that all variability in a 
process comes from a constant system of chance causes (i.e., only natural 
or inherent variation exists), process performance data can be relied on 
and used to guide actions aimed at changing the level of performance. 
Improvement actions whose benefits are subsequently validated by 
measurement can then be used to update and evolve the process 
definition. 
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2      The Perspectives of Process Measurement 

...the object of control is to enable us to do what we want to do 
within economic limits. 

Walter A. Shewhart, 1931 

A process that is out-of-control does not exist as a well-defined 

entity. 

Donald J. Wheeler and David S. Chambers, 1992 

The purpose of this chapter is to outline five perspectives that are central to process 
measurement: 

• performance 

• stability 

• compliance 

• capability 

• improvement and investment 

We will examine these perspectives in the context of the responsibilities and objectives of 
process management described in Chapter 1. The discussions here lay foundations for 
concepts introduced subsequently in Chapters 3 through 7, where we look at planning 
measurement activities and applying the results to manage and improve software process 
performance. 

In Chapter 1 we described the four key responsibilities of process management—define, 
measure, control, and improve. Although that discussion implied a sequence that begins 
with define, in practice it is helpful to know what and why we are defining before we set 
about constructing and implementing that portion of a software process that deals with mea- 
surement. To explore these issues, we direct 
our attention to the Control Process responsi- 
bility that is highlighted in Figure 2-1. This will 
help us introduce several important perspec- 
tives of process measurement very quickly. 

Controlling a process means making it 
behave the way we want it to. Control enables 
organizations to do two things: predict results 
and produce products that have charac- 
teristics desired by customers. With control, 
we can commit to dates when products will be 
delivered and live up to such commitments. 

Improve 
Process 

|*^ 

^ t 
Define        1 
Process      I 

Control 
Process 

Measure     B 
Process      If 

Execute 
Process 

Figure 2-1: The Control-Process 
Responsibility 
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Controlling a process is essential to producing products that customers can afford and that 
we can profit by. In short, control is central to achieving the business goals and objectives 
that make a software organization successful. 

The first step in controlling a process is to find out what the process is doing now. All 
processes are designed to produce results. The products and services they deliver and the 
ways they deliver them have measurable attributes that can be observed to describe the 
quality, quantity, cost, and timeliness of the results produced. If we know the current values 
of these attributes, and if a process is not delivering the qualities we desire, we will have 
reference points to start from when introducing and validating process adjustments and 

improvements. 

So our first concern when measuring for process management and improvement is to 
understand the existing performance of the processes we use—what are they producing 
now? Knowing how a process is performing will enable us to assess the repeatability of the 
process and whether or not it is meeting its internal and external needs. Notice that we said 
"how," not "how well." When we measure process performance, our purpose is not to be 
judgmental, but simply to get the facts. Once the facts are in hand and we know the current 
levels and variabilities of the values that are measured, we can proceed to evaluating the 
information from other perspectives. Our first concern, then, is as follows: 

• Performance—What is the process producing now with respect to measur- 
able attributes of quality, quantity, cost, and time? 

Measures of process performance quantify and make visible the ability of a process to 
deliver products with the qualities, timeliness, and costs that customers and businesses 
require. When measurements of process performance vary erratically and unpredictably 
over time, the process is not in control. To attain control, we must ensure first that we have a 
process whose variability is stable, for without stability we cannot predict results. So another 
important property associated with any process is that of process stability. 

• Stability—Is the process that we are managing behaving predictably? 

How do we know if a process is stable? We must first define what we mean by stable (see 
Sections 1.4 and 2.2), and then we must find ways of measuring appropriate process and 
product attributes to determine if stability has been achieved. Thus, as you may have 
already surmised, measurement lies at the heart of quantitatively understanding any process 
management issue. 

If process performance is erratic and unpredictable, we must take action to stabilize that 
process. Stability of a process depends on support for and faithful operation of the process. 
Three questions that should concern people responsible for processes are 

• Is the process supported such that it will be stable if operated according to 
the definition? 
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• Is the process, as defined, being executed faithfully? 

• Is the organization fit to execute the process? 

Questions of this sort address the issue of process compliance. 

• Compliance—Are the processes sufficiently supported? Are they faithfully 
executed? Is the organization fit to execute the process? 

Having a stable and compliant process does not mean that process performance is 
satisfactory. The process must also be capable. Capable means that variations in the 
characteristics of the product and in the operational performance of the process, when 
measured over time, fall within the ranges required for business success. Measures of 
process capability relate the performance of the process to the specifications that the 
product or process must satisfy. 

• Capability—Is the process capable of delivering products that meet 
requirements? Does the performance of the process meet the business 
needs of the organization? 

If a software process is not capable of consistently meeting product requirements and 
business needs, or if an organization is to satisfy ever-increasing demands for higher 
quality, robustness, complexity, and market responsiveness while moving to new 
technologies and improving its competitive position, people in the organization will be faced 
with the need to continually improve process performance. Understanding the capability of 
the subprocesses that make up each software process is the first step in making progress 
towards process improvement. 

• Improvement—What can we do to improve the performance of the 
process? What would enable us to reduce variability? What would let us 
move the mean to a more profitable level? How do we know that the 
changes we have introduced are working? 

The next four sections discuss the topics of process performance, stability, compliance, and 
capability in more detail. Section 2.5 then introduces the topic of process improvement. How 
measures can be used to address these issues is illustrated in Chapters 3 through 7. 

2.1     Performance 
What do we mean by process performance? 

Process performance refers to the characteristic values we see when measuring attributes 
of products and services that come from a process. Process performance can be described 
in two ways: by measuring attributes of products that the process produces and by 
measuring attributes of the process itself. Histories of these values describe how the 
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process has performed in the past. Under the right conditions, the histories give reference 
points for judging what the process is doing now and might do in the future. 

Examples of measurable product attributes include things such as function, size, execution 
speed, module strength, and profiles of statement types. They also include any quality 
attributes (such as ease of use and reliability) that would make the product more or less 
desirable to a user or customer. Examples of process attributes, on the other hand, include 
things like the amount of effort expended, the clock time or computer time required to 
perform a process or task, the sizes and durations of work flows and backlogs, the 
characteristics and quantities of resources used, and the numbers, types, and sources of 

defects detected, repaired, or reported. 

Product and process measures may well be the same measures. Measurements of product 
attributes such as McCabe complexity, average module size, and degree of code reuse that 
are tracked over time and used to investigate trends in process performance are just a few 

examples. 

We may also seek reasons for variations in process performance by measuring attributes of 
the resources or environments that support the process—for example, the experience and 
training levels of the software engineers or the amount of computer time or memory 
available. 

In each case, the key to measuring process performance is to choose attributes and 
measures that are relevant to the particular process and issues under study. We do this by 
selecting measures that not only reflect the intended purpose of the process, but also 
address the issues being considered. 

To measure process performance, we measure as many product-quality and process- 
performance attributes as needed, and we do this at several points in time to obtain 
sequential records of their behavior. It is these sequential records that are the basis for 
establishing statistical control and, hence, for assessing the stability and capability of the 
process. The properties of stability and capability are illustrated in Sections 2.2 and 2.4 of 
this chapter. 

The choices of attributes to measure will change from process to process and from issue to 
issue. This is where your knowledge of your organization's processes comes into play. We 
offer the guidelines in Figure 2-2 as a check against your selections. 

For performance data to be well defined, as required by the guidelines in Figure 2-2, they 
must satisfy three criteria: 

• communication. Will the methods used to define measures or describe 
measured values allow others to know precisely what has been measured 
and what has been included in and excluded from aggregated results? 
Moreover, will every user of the data know how the data were collected, so 
that they can interpret the results correctly? 
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Measures used to characterize process performance should 

• relate closely to the issue under study. These are usually 
issues of quality, resource consumption, or elapsed time. 

• have high information content. Pick measures of product or 
process qualities that are sensitive to as many facets of 
process results as possible. 

• pass a reality test. Does the measure really reflect the 
degree to which the process achieves results that are 

important? 

• permit easy and economical collection of data. 

• permit consistently collected, well-defined data. 

• show measurable variation. A number that doesn't change 
doesn't provide any information about the process. 

• as a set, have diagnostic value. They should be able to 
help you identify not only that something unusual has 
happened, but what might be causing it. 

Figure 2-2:  Guidelines for Selecting Product and Process Measures 

• repeatability. Would someone else be able to repeat the measurements 
and get the same results? 

• traceability. Are the origins of the data identified in terms of time, 
sequence, activity, product, status, environment, measurement tools used, 
and collecting agent? 

The traceability requirement is especially important to assessing and improving process 
performance. Because measures of performance can signal process instabilities, it is 
important that the context and circumstances of the measurement be recorded. This will 
help in identifying assignable causes of the instabilities. 

For example, suppose that a software problem report is prepared whenever a defect is 
encountered by a defect-finding activity. To find and fix the defect, programmers and 
analysts must know as much as possible about the circumstances of the encounter—how, 
when, where, what happened, under what conditions, and so forth. So it is helpful if this 
information is recorded on the problem report. 

For the same reason, measurements of process performance should always be 
accompanied by similar contextual information. When the data show process instabilities, 
the people who evaluate the data will look for incidents or events that are not part of the 
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normal process in order to identify assignable causes. Contextual information, together with 
data gathered from measures of process compliance, will help them identify these causes. 

Wheeler and Chambers, on page 112 of their book Understanding Statistical Process 
Control, discuss the need for contextual information [Wheeler 92]. They give examples of 
the kinds of questions that must be answered if performance data are to be interpreted 

correctly. Some of these questions are 

• What do the individual values represent? What are these numbers? 

• How are the values obtained? Who obtains them? How often? At which 
location? By what method? With what instrumentation? 

• What sources of variation are present in these data? 

• How are these data organized into subgroups? Which sources of variation 
occur within the subgroups? Which sources of variation occur between the 
subgroups? 

• How should such data behave? Are there natural barriers within the range 
of observed values? 

When you collect product and process measures, you should always be prepared to answer 
these kinds of questions. The answers will help point you (correctly) to assignable causes. 

2.2     Stability 

It is only in the state of statistical control that statistical theory 
provides, with a high degree of belief, prediction of 
performance in the immediate future. 

W. Edwards Deming, 1993 

...the necessary and sufficient condition for statistical control is 
that the causes of an event satisfy the law of large numbers as 
do those of a constant system of chance causes. 

Walter A. Shewhart, 1931 

...any unknown cause of a phenomenon will be termed a 
chance cause. 

Walter A. Shewhart, 1931 

Process stability is considered by many to be at the core of process management. It is 
central to each organization's ability to produce products according to plan and to improve 
processes so as to produce better and more competitive products. 
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What is meant by stability? To answer this question, we must first understand that almost all 
characteristics of processes and products display variation when measured over time. This 
variation has two sources: 

• phenomena that are natural and inherent to the process and whose results 
are common to all measurements of a given attribute 

• variations that have assignable causes that could have been prevented 

In equation form, the concept is 

[total variation] = [common cause variation] + [assignable cause variation] 

Common cause variation is the normal variation of the process. It exists because of normal 
interactions among the components of the process (people, machines, material, 
environment, and methods). Common cause variation is characterized by a stable and 
consistent pattern over time, as illustrated in Figure 2-3. The results of common cause 
variation are thus random, but they vary within predictable bounds. When a process is 
stable, the random variations that we see all come from a constant system of chance 
causes. The variation is predictable, and unexpected results are extremely rare. 

Frequency 
of 

Measured 
Values 

Variation in 
Measured Values 

Figure 2-3: The Concept of Controlled Variation 

The key word in the paragraph above is "predictable." Predictable is synonymous with "in 
control." Processes can vary in known, nonrandom ways and still satisfy Shewhart's 
definition of a controlled process. One example that Shewhart gives is that of the distance 
covered in successive intervals of time by a freely falling body [Shewhart 31]. Here our 
ability to predict the results is extremely precise, so by Shewhart's definition this is a 
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controlled process, even though the distance traveled increases steadily from interval to 
interval. The stock market, on the other hand, is not a controlled process. 

The processes that we use in business and industry are rarely in control. As Shewhart 
points out, 

...in the majority of cases there are unknown causes of 
variability in the quality of a product which do not belong to a 
constant system. This fact was discovered very early in the 
development of control methods, and these causes were 
called assignable. 

Walter A. Shewhart, 1931 

Variations due to assignable causes have marked impacts on product characteristics and 
other measures of process performance.3 These impacts create significant changes in the 
patterns of variation. This is illustrated in Figure 2-4, which we have adapted from Wheeler 
and Chambers [Wheeler 92]. Assignable cause variations arise from events that are not part 
of the normal process. They represent sudden or persistent changes in things such as 
inputs to the process, the environment, the process steps themselves, or the way in which 
the process steps are executed. Examples of assignable causes of variation include shifts in 
the quality of raw materials, inadequately trained people, changes to work environments, 
tool failures, altered methods, failures to follow the process, and so forth. 

Frequency   f 
of 

Measured 
Values 

Variation in 
Measured Values 

Figure 2-4:  The Concept of Uncontrolled or Assignable Cause Variation 

When all assignable causes have been removed and prevented from recurring so that only a 
single, constant system of chance causes remains, we have a stable process. The law of 

assignable causes are sometimes called special causes, a term introduced by W. Edwards Deming. 
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large numbers then applies, and we can assume that the objective probability that such a 
cause system will produce a given event is independent of time [Shewhart 31]. 

Stability of a process with respect to any given attribute is determined by measuring the 
attribute and tracking the results over time. If one or more measurements fall outside the 
range of chance variation, or if systematic patterns are apparent, the process may not be 
stable. We must then look for the causes of deviation, and remove any that we find, if we 
want to achieve a stable and predictable state of operation. 

One technique that is often used to establish operational limits for acceptable variation is 
statistical process control (SPC). SPC and its associated control charts were developed by 
Walter A. Shewhart in the 1920s to gain control of production costs and quality. Shewhart's 
techniques were used extensively in World War II and again in more recent years by W. 
Edwards Deming and others as a basis for improving product quality, both in Japan and in 
many U.S. companies. As a result of the successes of SPC in industrial settings, the 
techniques have been adopted for use in many other business areas. 

To some, SPC is a way of thinking, with tools attached. Its aim is to improve processes 
through causal analysis. SPC differs from other, more traditional approaches—such as 
problem management, zero defects, and repairing and reworking products after they have 
been produced—in that it provides more constructive help in reducing the causes of defects 

and improving quality. 

The principal thesis of this guidebook is that the techniques of SPC can be applied to 
software processes just as they have been to industrial processes, both to establish process 
stability and predictability and to serve as a basis for process improvement. 

For example, Figure 2-5 shows a control chart for the number of reported but unresolved 
problems backlogged over the first 30 weeks of system testing. The chart indicates that the 
problem resolution process is stable, and that it is averaging about 20 backlogged problems 
(the center line, CL, equals 20.4), with an average change in backlog of 4.35 problems from 
week to week. The upper control limit (UCL) for backlogged problems is about 32, and the 
lower control limit (LCL) is about 8. If future backlogs were to exceed these limits or show 
other forms of nonrandom behavior, it would be likely that the process has become unstable. 
The causes should then be investigated. For instance, if the upper limit is exceeded at any 
point, this could be a signal that there are problems in the problem-resolution process. 
Perhaps a particularly thorny defect is consuming resources, causing problems to pile up. If 
so, corrective action must be taken if the process is to be returned to its original 
(characteristic) behavior. 

We must be careful not to misinterpret the limits on the individual observations and moving 
ranges that are shown in the control chart. These limits are estimates for the natural limits of 
the process, based on the measurements that were made. The natural process limits 
together with the center lines are sometimes referred to as the "voice of the process." 
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Figure 2-5:  Control Chart for the Backlog of Unresolved Problems 

The performance indicated by the voice of the process is not necessarily the performance 
that needs to be provided to meet the customer's requirements. If the variability and location 
of the measured results are such that the process, albeit stable, produces too many 
nonconforming products, the process must be improved. This means reducing the variability, 
moving the average, or both. We will illustrate these alternatives in Section 2.4 when we 
address the issue of process capability. 

2.3     Compliance 
For a software process to be stable and predictable, it must be operated consistently. 
Processes that are clearly defined, effectively supported, faithfully executed, reinforced, and 
maintained are more likely to be stable than those that are not. If a process is not stable, the 
search for assignable causes often begins with an examination of process compliance. 
There are three aspects of compliance that experience has shown can significantly affect 
process performance. Each of these aspects is measurable. 

• fitness (ability) to execute the process. We measure fitness to allow us 
to understand the extent to which our organization is able and ready to use 
a particular process. If, for example, project personnel are not aware of, 
trained in, or given the tools needed for executing the process, it is unlikely 
that the process will be executed properly. Similarly, if the tools and 
procedures don't accomplish what was intended, the performance of the 
process will be in jeopardy. Understanding the fitness of the organization to 
execute the process allows us to identify appropriate actions to take to 
remedy situations where lack of fitness is the root cause of process 
instability or inability to meet customer needs. 
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• use of the defined process. Process stability depends on consistent 
execution of the process. If we determine that the performance of the 
process is not stable (not in-control), one reason may be that the process is 
not being executed as defined. If the intended tools are not being used, or if 
procedures other than those contained in the process definition are 
sometimes substituted, the process is likely to be unstable. By measuring 
the extent of defined process use, we can determine when the process is 
not being followed faithfully and what the reasons for deviations might be. 
We can then take appropriate action. Compliance with standards, 
directives, and other constraints may also concern us from time to time, but 
only if it bears directly on process performance. 

• oversight,  benchmarking, and assessment of the  process. All 
processes are subject to forces of entropy; that is, if left alone, processes 
tend to deteriorate from a controlled state to a chaotic state. Unless we 
make a conscious effort to sustain our processes by reinforcing their proper 
use and by repairing the effects of entropy, we tend to loose control. 
Management oversight through frequent and periodic reviews of the 
process status, formal assessment of processes, and project benchmarking 
provides impetus for sustaining the process. 

The concept of fitness to execute a process applies to people, resources, methods, 
technologies, and other support related to the process. Although an organization may have 
defined a process, there is no guarantee that its people can actually use it or properly 
execute it. There are many reasons why this may be so. Examples include lack of 
awareness, insufficient training, inadequate tools or facilities, difficulties in transferring 
technology, inadequate management support, and mismatches between the process and 
the software domain characteristics. Measurements help detect and diagnose these 
conditions. 

Measuring the fidelity of process use involves measuring the breadth of use (how widely 
used), depth of use (thoroughness), frequency of use (how often used), and duration of use 
(how long in use). Evaluating process use requires that we have criteria in mind that must be 
met in order for a process to qualify as being "used." Asking questions such as, "Do you use 
tool Y?" or "Do you use procedure X?" is not very helpful in obtaining insights on use. 
Instead, questions that ask, "How often do you use X?", "How many use Y?", and "What and 
how much training has been received?" lead to descriptions and measurements of attributes 
that provide better insights. 

Oversight, benchmarking, and assessment of a process are techniques that can be used to 
deal with process entropy. The measures used for this aspect of compliance will always 
evolve and vary significantly from one organization to another. The CMM, for example, 
defines five levels of process maturity that are used by many organizations to assess the 
maturity of their software processes [Paulk 93a, 93b]. Other models and measures can be 
found in the literature as well. 
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In practice, the attributes that organizations measure to determine compliance depend 
largely on the sensitivity of the results to different values of the attributes and on the 
likelihood that the attributes may vary. In many cases, a single variable or a small set of 
variables will dominate the others. Identifying the dominant variables is important because of 
the high degree of leverage, in terms of measurement cost, that they offer for recognizing 
assignable causes of instability and opportunities for process improvement. 

Compliance measures are not measures of performance in that they are not attributes that 
reflect the degree to which the process fulfills its purpose. Instead, compliance measures 
address reasons why a process might not be performing as it should. These measures 
provide contextual information for interpreting and acting on the data used to characterize 
process performance. If used properly, compliance measures also provide early warnings of 

processes that are about to go out of control. 

Figure 2-6 lists some software entities and attributes that are good starting points for 
measurement when examining questions of process fitness and use. The entities of interest 

Fitness 

Are all the requisites for successful 
process execution in place? (personnel, 
skills, experience, training, facilities, 
tools, documented procedures, etc.) 

Entities Attributes 

People Skills 
Experience 
Training 
Quantity 

Tools Accessibility 
Adequacy 
Utility 
Skills 

•   Procedures Coverage 
Sufficiency 
Quality 
Documentation 

Facilities Space 
Computers 
Technical Support 
Sufficiency  

Work Plan Targets 
Work Breakdown 

Structure 
Applicability 
Understandable 
Doable 

Use 

Is the process being executed 
faithfully? Are the tools, methods, 
practices, and work plans being used? 

Entities Attributes 

People Effort 
Time 

Tools Use 
How widely 
How frequently 
How long  

Procedures Awareness 
Use 

How widely 
How frequently 
How long  

Facilities Use 
How widely 
How frequently 
How long  

Work Plan Awareness 
Use 

How widely 
How frequently 
How long 

Figure  2-6:  Examples of Entities and Attributes that Can Be 
Measured to Address Process Compliance 
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are people, tools, procedures, facilities, and work plans. The attributes of interest for each 
entity vary with the questions. Different questions often require different measurement 
approaches. When you use Figure 2-6 as a guide, you should add to or modify the entities 
and attributes so that they address the processes of concern in your own organization. 

Figures 2-7 and 2-8 are examples of charts produced from compliance measures. The issue 
being examined is the penetration of inspection practices across all divisions of a major 
company. Here a survey was conducted to investigate the extent to which software and 
document inspections were being used [Grady 94]. The year was 1993; each project was 
produced in a software laboratory; and each laboratory was located within a division. 
Engineers were asked to report on only the most recent project they completed. A project 
was credited with using software inspections if it had held four or more inspections over the 
life of the project. The project was credited with using a particular type of document 

inspection if it used that type at least once. 

The percent of projects that 
used four or more inspections 
was computed for each 
laboratory. Because there were 
reasons to suspect that results 
might vary with laboratory size, 
the results were grouped 
according to the number of 
software (SW) and firmware 
(FW) engineers in the 
laboratory, and the average 

Inspection Process Use 
Average % of projects whose engineers did 
4 or more inspections on their last project 
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Figure 2-7:   Inspection Process Use 

percent of projects using inspections within each group was determined. The shaded bars in 
Figure 2-7 show the results. The unshaded bars show how the engineers were distributed 
across the company (e.g., about 50% of the company's engineers worked in laboratories 
that employed 75 or more engineers). 

Figure 2-8 shows the extent to 
which documents were 
inspected in those divisions 
that reported that more than 
25% of their recent projects 
used software inspections four 
or more times (i.e., divisions 
that had been at least modestly 
penetrated by software 
inspection practices). The bars 
show the percent of projects in 
these divisions that reported Fi9ure 2'8-  Inspection Use by Document Type 

using the indicated types of inspection one or more times. 
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Measurements of compliance are not intended to address process performance. Their 
primary purpose is to provide contextual information that helps to explain performance 
results and the variations and patterns that are observed. For example, if a sequential plot of 
a product or process measure suggests that the process has become unstable, compliance 
measures may point to the cause. On the other hand, if a process is unstable while being 
executed in compliance with its definition, this may be a strong indication that the problems 

lie elsewhere. 

2.4     Capability 

A process has no measurable capability unless it is in 

statistical control. 

W. Edwards Deming, 1986 

What is process capability? As in the case of stability, we must recognize that measured 
values of most process and product characteristics will vary over time. When a process is 
stable (under statistical control), its results will have predictable means and be within 
predictable ranges about the means. We can then examine the question of whether or not 

the process is meeting its goals. 

The histogram in Figure 2-9 is a frequency plot of measurements obtained from a stable 
process. The histogram shows the empirical distribution of measurements of elapsed time 
between a problem's evaluation and its resolution in a problem-resolution process. Since the 
process is known to be stable (presumably determined by control charting), the results can 
be taken to reflect the ability of the process to perform in a timely fashion. As the variation is 

UCL = 10.7 Days 

■ 
Voice of the Process ^ 

Customer 
Requirement 
(Voice of the 
Customer) 

Frequency Target 
Upper Limit 
of 12 days 

M  

Elapsed Time Between Problem Evaluation and Resolution (days) 

Figure 2-9:  Histogram Reflecting Process Capability 
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Upper Spec 

due solely to a constant system of chance causes (the definition of stable), the mean and 
control limits shown in the figure represent what the process is able to accomplish, as it is 
currently defined and executed. In this sense the histogram, the mean, and the limits 
together represent the voice of the process. 

If we superimpose the customer (or business) requirement on the histogram, we can 
compare what the process says it can do to what the business says it needs. For example, 
the solid vertical line to the right of the histogram in Figure 2-9 depicts the customer's 
requirement. Requirements (or specifications) like this are often termed "the voice of the 

customer." 

If, on the other hand, one or both of the natural process limits were to fall outside the 
specification limits, there would be frequent occasions where the process would not meet its 
requirements. To change that situation, either the variability would have to be reduced or the 
process mean would have to be moved (or both). A third alternative may exist in some 
situations—relaxing the specifications to bring the requirement and the process limits into 
alignment. Figure 2-10 illustrates the three alternatives. 

When the variability shown by the voice of 
the process falls within the limits required 
by the customer, the process conforms to 
customer requirements. When a process 
is stable and conforming to requirements, 
it is termed capable. The concept of 
capability thus depends on both the 
stability of the process and its ability to 
conform to customer requirements. 

Analysis of process performance identifies 
areas where the capability of a process 
can be improved to better support 
business objectives. Even though a 
process may be stable, its capability may 
need to be improved to satisfy competitive 
pressures or comply with customer needs. 

Figure  2-10: Aligning Process Performance 
Note   that   the   concept   of   process to Process Requirements 
capability is different from that of a 
product tolerance or planning target. Mistaking product tolerances and planning targets for 
process capability is a frequent cause of missed commitments. 

Knowledge of process capability is essential for predicting the quality of products and the 
proportion of defective units that an organization produces. Projections of quality that are 
based on desires or wishful thinking, rather than statistically relevant historical data, are 
destined to cause problems down the road. 

Mean. 

Upper Spec 
Shift the Aim 

Change the Specs 

Upper Spec 

V zia 
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2.5     Improvement and Investment 

Any company engaged in continuous improvement strategies 
will be able to substantiate its improvements by observing a 
large number of associated out-of-control processes. 

W. Edwards Deming, as reported 
by Hoyer and Ellis, 1996 

Business goals and strategies, together with factual data about attributes of product quality 
and process performance, are the key drivers that lead to actions that improve a software 
process. But just identifying the changes that are needed to improve a process is not 
sufficient. We must also look at the benefits that justify the costs associated with changing 
the process. This often means that measures which go beyond process performance may 
be required. Examples include training costs and costs for additional equipment, new 

programming tools, and so forth. 

Economic payback may not be the only measure appropriate for quantifying the value of 
process changes. Recent studies have concluded that traditional financial indicators alone 
may be neither necessary nor sufficient to judge business performance or to justify 
investment in process changes [Kaplan 92, Brodman 95]. These studies cite operational 
measures of customer satisfaction, organizational innovation, competitive advantage, and 
improving core competence as important drivers of future business success. 

For example, Lynch and Cross, in their book Measure Up! suggest a number of measures 
that go beyond traditional financial measures like profitability, cash flow, and return on 

investment [Lynch 95]. The 
measures that they propose 
relate to business operating 
systems, and they address 
the driving forces that guide 
the strategic objectives of 
the organization (see Figure 
2-11). 

Goals & Strategies Measures 

Lynch and Cross suggest 
that customer satisfaction, 
flexibility, and productivity 
are the driving forces upon 
which company objectives 
are based. Status of these 
factors can be monitored by 
various indicators, as 
suggested in Figure 2-12, 
which is adapted from their 

Business 
Operating 

Systems 

Departments 
and Work 

Centers 

External effectiveness Internal efficiency 

Figure  2-11: Lynch and Cross's Performance Pyramid for 
Business Operating Systems 
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book. These indicators can be 
derived, in turn, from lower level 
(departmental) measures of waste, 
delivery, quality, and cycle time. 
The concept is illustrated in Figure 
2-13. Figure 2-13 also points out 
that many measurements of 
process performance are obtained 
directly from measurements 
reported by the projects that make 
the organization's products. 

The measures that you should use 
to rationalize and gain approval for 
software process investment and 
improvement are fundamentally 
the same as those suggested by 
Lynch and Cross. Departmental 
(and lower level) measures can be 
related to software product and 
process measures with little 
difficulty. Rework, defect counts, 
schedules, development time, and 
service response time are just a 
few examples. 

Potential Indicators of Customer Satisfaction, 
 Flexibility, and Productivity  

Customer Satisfaction 

Flexibility 

Productivity 

License renewal rate 

Number of new licenses 

Revenue per customer 

Number of new customers 

Number of complaints 

Customer ratings of products or 
services (from surveys) 

Quoted lead times 

On-time delivery 

Time to market 

Time to accommodate design 
changes 

Number of change requests 
honored 

Number of common processes 

Number of new products 

Reductions in product development 
or service cost 

Rework as a percent of total work 

Cost-to-revenue ratios 

Ratios of development time to 
product life  

Figure 2-12: Examples of Indicators for Business 
Operating Systems 

Organizational Organizational 
Goals & Strategies   Issues 

Customer 
satisfaction 

Flexibility 

Productivity 

Cycle, ^ 
Quality, «■ 
Delivery   ™ 
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Cycle, 
Delivery 

Waste, 

Quality, ^~ 
Delivery 
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Process 
Issues 

^ Waste   - less rework 
- fewer changes 
- reduce scaffolding 

^ Cycle - reduce waiting 
- fewer paths 
- shorter paths 
- smaller queues 

4i Quality  - improved conformance 
- reduced defects 

$ Delivery - on-time delivery 
- frequency 
- responsiveness 

M 
E 
A 
S 
U 
R 
E 
M 
E 
N 
T 

Project 
Issues 

4 Cost 

A. Process 
^ duration 

^ Defects 

^ Delivery 

Figure 2-13: Sources of Early Indicators for Customer Satisfaction, Flexibility, and 
Productivity 
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It is important, therefore, that people who propose improvements understand not only the 
business goals and strategies of the organization, but also the priorities, risks, and issues 
associated with the goals and strategies. Identifying process measures that correspond to 
the business indicators in Figures 2-12 and 2-13 is challenging but doable. The key is to 
relate the costs and benefits of process improvement actions to the business indicators used 

in your own organization. 

Experience has shown that measurements and analyses which can withstand the scrutiny of 
people not directly involved with the management and improvement of software processes 
are essential. One of the most important issues is that of demonstrating in a practical and 
statistical sense that the changes proposed can reasonably be expected to have the effects 
predicted. When we are able to show that process performance is stable and that changes 
are therefore needed if process capability is to be improved, and when we can predict the 
benefits of proposed process improvements based on sound evidence, then the credibility 
and confidence in proposals that require investment are enhanced significantly. These 
proposals then have a much better chance of being accepted and adequately funded. 
Proposals and plans that can be shown to measurably aid achievement of organizational 
goals are more readily approved and adapted than those that cannot. 
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3      Planning Measures for Process Management 

The situation was a paradise for theorists, untrammeled by 
facts. 

J. Donald Fernie, 1996 

In Chapter 1, we outlined the responsibilities and objectives of process management and 
identified the relationships that the activities of planning and applying measures have with 
process management. The purpose of this chapter is to explore measurement planning 
activities in more detail and show how they relate to process management. This focus is 
highlighted in Figure 3-1. 

Customer Requirements 
& Business Needs 

Process 
Improvements 

Process 
Definitions Product 

Measurements 

Figure 3-1:     Measurement Planning and the Key Responsibilities of Process 
Management 

Measurement planning progresses in three stages: identifying process management issues, 
selecting and defining the corresponding product and process measures, and integrating the 
resulting measurement activities into the organization's existing software processes. Figure 
3-2 illustrates the sequence of these stages. 

Goals |—"V 
Objectives I     X 

Identify 
Process 
Issues t> Select and 

Define 
Measures o Integrate with 

Software 
Process 

Figure 3-2:  The Principal Activities of Measurement Planning 

CMU/SEI-97-HB-003 33 



Each stage in Figure 3-2 builds on the one that precedes it. The goals and objectives of your 
organization will guide you in identifying issues; identifying your issues leads to selecting 
and defining measures; and selecting and defining measures puts you in position to plan the 
related measurement activities and integrate them into your software processes. 

Sections 3.1-3.3 describe the three stages of measurement planning and suggest 
approaches to each. 

3.1     Identifying Process Issues 

All too often our perception is wrong and the answer to our 
question was OK, but we simply asked the wrong question. 

Jim Ban, 1996 (in an internet 
posting to comp.software-eng) 

Process management responsibilities can encompass the entire life cycle of a software 
product. They can also focus on specific aspects of the development or support cycle. In 
either case, the process or subprocess that is being managed has a purpose or objective—a 
raison d'etre that can be traced back to the software organization's business goals. 

Experience has shown that it is important to identify the critical factors that determine 
whether or not your processes succeed in meeting the goals you set. These critical factors 
often arise from concerns, problems, or issues that represent levels of risk that threaten your 
ability to meet your goals, responsibilities, or commitments. They also arise from 
specifications that must be met to satisfy customer requirements or downstream process 
needs. We refer to critical factors collectively as issues. Note that issues are not necessarily 
problems. Rather, based on your understanding and experience with the processes and the 
products the processes produce, they describe situations that require attention. 

Steps for Identifying Process Issues 
The following steps outline a straightforward approach for identifying process issues. 

1. Clarify your business goals or objectives. You will need to understand 
how your business goals or objectives relate to your software processes. 
In most cases, business goals and objectives that are tied to cost, quality, 
or time can be mapped readily to the appropriate software processes. 

2. Identify the critical processes. Processes that have experienced 
problems in the past, are executed across organizational boundaries, use 
a technology for the first time, or operate under higher work loads than 
have been used before are all prime candidates for your list of critical 
processes. Processes that provide inputs or support to downstream 
processes are candidates as well. The list you identify may vary with the 
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passage of time or with your progress through a development or support 
cycle. 

List the objectives for each critical process. Listing objectives in terms 
of process performance will help you identify potential problem areas. The 
best way to do this is in terms of the attributes of the products or processes 
that you want to control or improve. You may find that successfully meeting 
the objectives for a process depends on the performance of upstream 
processes. If these processes have not been selected for measurement, 
you may want to consider adding them to the list created in Step 2. 

List the potential problem areas associated with the processes. These 
are concerns or issues that could jeopardize attaining the objectives. 
Listing potential problem areas requires that you have a good 
understanding of your processes and how they relate to each other. 
Process flow diagrams and listings of the entities associated with them can 
help significantly here. 

Group the list of potential problems into common areas or topics. 
This will help you to identify issues that can be described and quantified by 
closely related measurements. 

The Role of Mental Models 
One technique for identifying key process issues is to ask questions about the performance 
of each process and the quality of the products it produces. Your ability to identify critical 
factors and issues depends on the picture you have in your mind of the tasks, resources, 
and products required to meet your goals. This picture is often called a mental model [Senge 
94]. Sketching or diagramming your mental models for the processes you manage can be 
very helpful in communicating the issues and measurement possibilities to others, as well as 
in solidifying your own understanding of the processes. An explicit model of the process 
under study will visually summarize the relationships among the process tasks. This often 
brings to light implicit factors that are otherwise overlooked and that may need to be 
understood more clearly. 

Figure 3-3 illustrates the general shape of many process models. Generic models like this 
are easily elaborated and adapted to specific situations. To construct a specific process 
model, you should look for 

• things the process receives (inputs and resources)—these are used or 
supplied 

• things the process produces (outputs)—these include products, by- 
products, and effects 

• things the process consists of (activities, flow paths, and agents)—the 
structure of the process 

CMU/SEI-97-HB-003 " 35 



• things that are expended 
or consumed (consum- 
ables) 

• things the process holds or 
retains (internal artifacts, 
such as inventory and 
work in progress) 

Each "thing" in the process is an entity, and 
each entity has attributes that characterize 
some aspect of the process or its products. 
Thus, every attribute in a model of a 
process is a candidate for measurement. 
We will return to this generic model and 
discuss it in more detail later in this chapter. 

<The Process> 

receives^ 

/consists of J| 

(consumes J produces 

entities 

attributes 

entities 

i 
attributes 

( holds 3 

entities 

attributes 

Figure 3-3:  A Generic Process Model 

Figure 3-4 shows a simple model for a 
problem management process. The lines from one box to the next indicate the flow of 
problem reports. The boxes designate the major tasks that must be carried out to move 
each problem report from the "open" state to the "closed" state. Simple models like Figure 3- 
4 are useful not only for identifying process issues that bear watching, but also for selecting 
process attributes for measurement. They are also useful for ensuring that everyone working 
on process improvement is addressing the same process. 

Process Recognition 
Criteria 

Exit state Recognized 

NDOP   = nondefect-oriented problem 
DOP     = defect-oriented problem 
DUP     = duplicate 

Evaluation ? 
Criteria 

Evaluated Resolution 

3 Resolution 
(NDOP) 
Criteria 

Resolved _ 

4 Resolution 
(DOP) Close 
Criteria Criteria 

Resolved 

5 

Closed 

Resolution 
(DUP) 

Criteria 
Resolved 

Figure 3-4: A Simple Process Model for Defect Tracking 
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Once you have sketched flowcharts or other pictures that describe a process, step back a bit 
and examine the process as a whole to see if you have missed anything. By asking 
questions such as the following, you may discover additional entities whose properties could 

be worth measuring. 

What determines product quality? 
What determines success? 
What do our customers want? 
What could go wrong? 
What's not working well? 
What might signal early warnings? 

Where are the delays? 
How big is our backlog? 
Where is backlog occurring? 
What things can we control? 
What limits our capability? 
What limits our performance? 

As your knowledge of a process increases, or when the process is inherently large and 
complex, you may find more sophisticated methods useful. For example, structured control- 
flow diagrams like the one illustrated in Figure 3-5 can help you to identify important 
elements of a process and establish mutually understood frameworks for team-based efforts 
[Henry 92]. 

Software Development Phase 

Specify     Design Code Test 

Requirements Requirements System 
Test 

Software 
Design 

Design Integrate, Test, 
& Evaluate 

Code    Modulesi Unit 
Test 

Tier 2: Integration and Evauation Tasks' 

H Determine L^     Specify 
Modules   ^HTest 

Team 

Develop 
Procedures 

Tier 1: Integration Test and Evaluation 
Project Schedule Measurements 

Jf                      i T      1       ■ 
Source Code Integration Test 

and 
Evaluation 

Test Re 

A      1 
Code Changes Defect Reports 

t 
Conduct 
Tests 

I 

Tier 3: Integration Test 
and Evaluation Procedures 

Determine 
Groups 

Assign 
Duties 

._►© 

Figure 3-5:  Example of a Control-Flow Diagram 
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Common Process Issues 
All processes have at least three, and often four, characteristics in common. In addition to 
producing a specific product or service, they require expenditures of resources and time to 
produce the product or service; they are expected to deliver the product on time; and from 
time to time they will produce products with defects or imperfections. Because of these 
similarities, there are certain fundamental issues associated with processes that everyone 
concerned with process management shares. These are 

• product quality (specifications, tolerances, action limits, and defects) 

• process time or duration 

• product delivery 

• process cost 

These issues tie very closely to the process performance attributes that an organization will 
want to select for control or improvement. The issues—important to most organizations and 
common to all software processes—are discussed briefly below. They are readily measured, 
and understanding the issues provides motivation for all participants in the process. 

• Product quality (specifications, tolerances, action limits, and 
defects).4 Excessive variability and off-target processes cause defects. 
Defects introduced into a product have multiple effects. They require the 
effort of skilled personnel to detect, remove, repair, and retest. Defects also 
increase process cost, time, and complexity. In addition, defects that 
escape detection and repair before the product is released to a customer 
reduce user satisfaction with the product. This is just as true for products 
that go to internal customers as it is for those that go to external customers. 
Activities that decrease the introduction of defects or increase the early 
detection of defects are prime targets for measuring the effectiveness of the 
process. 

• Process duration. Process duration is an issue that translates directly to a 
process attribute. It is the elapsed time from the start of processing until the 
product is available to the user. The user in this case is not necessarily the 
customer or "end user." It may be a person or team involved in subsequent 
process activities. The flow of work through a given process can often be 
improved by providing better tools, using better technology, making more 
effective use of time, eliminating unnecessary steps, and improving training. 

• Product delivery. Delivery is a process event. At delivery, the timeliness 
and quantity of a product or service can be measured against expectations 

4Defects occur when products do not meet specifications for designated attributes of product quality. 
Tolerances are the amount of leeway granted by specifications. Action limits are limits used to control 
variability in specified attributes of product quality. 
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or commitments. If a product or service is not on time (late or early), this 
may have consequences for the customer or user of the product or service. 
Delivery is directly related to process duration (via lead time and the time 
required to execute the process) and delivery frequency. 

• Process cost. Process cost includes the cost of executing and supporting 
the process as well as the costs of understanding and managing the factors 
that drive costs. As in any other activity, the cost of a software process has 
many elements and is affected by a variety of factors. Examples include the 
nature of the product, the statement of work, skills and experience of 
personnel, labor rates, cost of facilities, overhead, and the pacing of the 
process. The key to managing process cost is to identify the elements of 
cost that you can control or affect and look for opportunities to reduce or 
eliminate the costs. Because of the labor-intensive nature of producing and 
supporting software, effort is frequently the predominant cost driver for 
software processes. Measuring how and where people spend their time and 
relating this to causal factors is important in understanding and controlling 
the cost of a process [Perry 94]. This often leads to recognizing the need for 
better tools, training, and different skill mixes. 

3.2     Selecting and Defining Measures 

...there is nothing more important for transaction of business 
than use of operational definitions. 

W. Edwards Deming, 1986 

We now turn to the second planning activity, selecting and defining measures, as highlighted 
in Figure 3-6. 

Goals I—*v 
Objectives I      >* 

Identify 
Process 
Issues 

Integrate with 
Software 
Process 

Figure 3-6:  Measurement Planning Activities—Step 2 

Selecting and defining measures are two different but closely related activities. As we will 
see, it is one thing to select a measure such as the number of reported defects that we 
might use to characterize a process or product. It is quite another to create an operational 
definition for a measure once it has been selected.5 For example, an operational definition 

5Operational definitions tell people how measurements are made, and they do this in sufficient detail 
that others will get the same results if they follow the same procedures. 
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for the number of defects found might include the type of defect, when it occurs, when it is 
detected, the finding activity, whether the defect is static or dynamic, its criticality, and a 
description of the processes used to find, classify, and count the occurrences of the defect. 
To have an operational definition, you must know enough about what the data represent and 
how they are collected (1) to ensure that different people will implement the measures 
correctly and consistently and (2) to interpret the data correctly. 

The activities of selecting and defining measures are coupled in practice because it is not 
unusual to have to reconsider a measure due to your organization's inability to apply it easily 
or consistently once it has been operationally defined. In the pages that follow, we point out 
several factors to consider when selecting measures. Then we discuss some important 
characteristics of operational definitions and suggest'methods for making your definitions 

operational. 

As you select and define your measures, keep in mind that you will be seeking to apply them 
to help you control and improve your processes. The primary vehicles that will help you do 
this are statistical process control and quality improvement methodology. Nonmanufacturing 
applications of SPC and quality improvement often require ingenuity beyond that normally 
required for the manufacturing applications where the methods have demonstrated proven 
value. There seem to be two main reasons why this is so [Montgomery 96]: 

1. Most nonmanufacturing operations do not have natural measurement 
systems that allow us to define quality easily. 

2. The systems that are to be improved are usually fairly obvious in a 
manufacturing setting, while the observability of processes in a 
nonmanufacturing setting may be fairly low. 

The key to process management and improvement in nonmanufacturing environments is to 
focus your initial efforts on resolving these two issues. 

Selecting Process Measures 

...if one is to make a formal measurement, one must accept 
some responsibility for making some effort to define one's 
purpose. As in many other types of activity, this step is too 
often taken for granted. The result is that someone else who 
wants to use the measurement may have to struggle to 
interpret the data gathered by the original investigation. It even 
happens that the researcher himself forgets and changes his 
viewpoint, so that he later makes use of data in a way that is 
difficult to justify. 

Paul Kirchner, 1959 
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In Section 3.1, we stressed the importance of identifying key process issues and the things 
you would like to know to better manage those issues. You must now decide what measures 
to use to shed light on the issues. As you think about this, you will realize that identifying 
issues is like the "tip of the iceberg." Selecting measures requires more than simply stating 

an issue. For instance, you want to know 

• What processes have effects on the issue? 

• What products are affected by the issue? 

• What product entities and attributes should be measured? 

• What process entities and attributes should be measured? 

• What resource entities and attributes should be measured? 

• How will the measurements be used? 

• How will the measurements be analyzed? 

• Who will use the measurement results? 

Selecting measures can be a hectic and time-consuming activity if you do not have a clear 
understanding of the factors that can influence your selection. The following procedure can 
help you develop an understanding of many of these factors, so that you can choose 
measures that shed light on the issues. Keep in mind that the goal is to find measures that 
provide information relevant to the issues you identified in the initial stage of your planning 
efforts. 

1. Clarify the issue. Make sure that you understand all facets and 
dimensions of the issue. Put the issue in context by 

- listing the questions that are being asked 
- listing the questions that need to be answered (even if they are not 

asked) 
- identifying who is asking and why (to ensure that you understand the 

perspectives of those using the measurement results) 
- identifying the time elements relative to the issue (Is the issue 

periodic, transient, or event based?) 
- identifying the purpose of the measures relative to the issue (What 

does the issue suggest in terms of data analysis and action? Will the 
data be used to understand, compare, predict, control, assess, or 
improve some aspect of the process?) 

2. Identify the processes encompassed by the issue. You have done 
some of this already when you identified the critical process issues that 
concern you. You may now see other processes whose results affect the 
issue. 

3. Review the relationships among the processes to determine which 
processes need to be measured. Some processes, although encompassed 
by the issue, may contribute little or no risk or uncertainty relative to the 
issue. Those processes can often be ignored. Sketches that make explicit 
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the mental models for your processes will be of significant help, both here 
and in the steps that follow. 

4. For each process, select the entities and attributes to be measured 
and the data elements to be collected. That is, select attributes whose 
measures will be most influential or dominant in determining product 
quality or in meeting process objectives. Your knowledge of the process 
will be a significant factor in selecting entities and attributes that are 
important. You should try to identify entities and attributes that have direct 
relationships to process results. If you are interested in process cost, 
product size, number of defects found, and so forth, measure these 
attributes directly. Do not rely on indirect relationships to measure process 
results. For example, do not measure defects to determine complexity, or 
size to determine cost, unless you have a theory or data to support the 
validity of a particular cause-effect or predictive relationship. 

5. Test the potential usefulness of the selected measures by sketching 
indicators, especially charts and graphs, that show how you propose to 
use the measurements you will obtain. Do not be surprised if this leads you 
to sharper, more focused questions and definitions.6 

When selecting entities, attributes, and data elements for measurement, it is helpful to frame 
your selections in the context of a model that describes the process of interest. Visual 
models are especially helpful. With a concrete (explicit) model of the process as your guide, 
you can solidify your understanding of the process as well as communicate with others when 
selecting entities to measure. Good models will help you identify the products and by- 
products that are produced at all stages of a process. 

Some examples of the kinds of entities often found in processes are listed in Figure 3-7. You 
may want to include some of these elements in your mental models and consider measuring 
one or more of them when seeking to understand what your processes are doing and why 

they are doing it. 

We suggest that you tuck Figure 3-7 away for future use as a checklist. It gives an extended 
(but by no means complete) set of entities to consider when looking for useful product and 
process measures. Note that characterizations of process performance will usually be based 
on attributes of entities found in the four right-most columns. Measures of process 
compliance, on the other hand, will usually address entities found in the two left-most 
columns. (Entities in the second column can be of interest in both cases.) 

Figure 3-8 is similar to Figure 3-7. It gives examples of attributes of process entities that you 
may want to consider as candidates for measurement when studying process performance. 

6Examples of indicators and their relationships to measurement definitions and mental models, are 
given in Goal-Driven Software Measurement—A Guidebook [Park. 96a]. 
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Measurable Entities in a Software Process 

Things received   Activities and 
or used their elements 

products and by- 
products from 
other processes 

ideas, concepts 

resources 
• people 
• facilities 
• tools 
• raw materials 
• energy 
• money 
• time 

guidelines and 
directions 
• policies 
• procedures 
• goals 
• constraints 
• rules 
• laws 
• regulations 
• training 
• instructions 

processes and 
controllers 
• requirements 

analysis 
• designing 
• coding 
• testing 
• configuration 

control 
• change 

control 
• problem 

management 
• reviewing 
• inspecting 
• integrating 

flow paths 
• product paths 
• resource 

paths 
• datapaths 
• control paths 

buffers and 
dampers 
• queues 
• stacks 
• bins 

Things 
consumed 

resources 
• effort 
• raw materials 
• energy 
• money 
• time 

Things held or 
retained 

people 

facilities 

tools 

materials 

work in process 

data 

knowledge 

experience 

Things produced 

products 
requirements 
specifications 
designs 
units 
modules 
test cases 
test results 
tested 
components 
documentation 
defects 
defect reports 
change 
requests 
data 
acquired 
materials 
other artifacts 

by-products 
knowledge 
experience 
skills 
process 
improvements 
data 
good will 
satisfied 
customers 

Figure 3-7:  Measurable Entities in a Software Process 

Neither Figure 3-7 nor 3-8 should be viewed as a formal taxonomy or classification scheme. 

Their purpose is simply to guide you as you look for elements and attributes that can provide 

useful information for managing or improving process performance. In practice, it makes 

little difference whether or not you have things classified "right" (whatever that means). But it 

makes a big difference if you have overlooked something important. Reviewing Figures 3-7 

and 3-8 may give you some ideas and help avoid oversights. 

When using Figures 3-7 and 3-8 as checklists, keep in mind that inputs to one process are 

almost always outputs of another—things received or used have to be produced 

somewhere, and things produced presumably get received and used by some downstream 

customer or activity. Depending on the process, activity, or task that you are examining, you 

may find elements in column 1 that belong in column 5 and vice versa. If so, simply put them 

where you think they belong. The important thing is not where they fit, but that you found 

something worth measuring. 
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Measurable Attributes of Software Process Entities 

Things received or used 

changes 
type 
date 
size 
# received 

requirements 
requirements stability 
# identified 
% traced to design 
% traced to code 

problem reports 
type 
date 
size 
origin 
severity 
# received 

funds 
money 
budget 
status 

people 
years of experience 
type of education 
% trained in XYZ 
employment codes 

facilities & environment 
square feet per 
employee 
noise level 
lighting 
# of staff in cubicles 
# of staff sharing an 
office or cubicle 
investment in tools per 
employee 
hours of computer 
usage 
% of capacity utilized 

Activities and their 
elements 

flow paths 
• processing time 
• throughput rates 
• diversions 
• delays 
• backlogs 

length, size 
• queues 
• buffers 
• stacks 

Things consumed 

effort 
• # of development hours 
• # of rework hours 
• # of support hours 
• # of preparation hours 
• # of meeting hours 

time 
• start time or date 
• ending time or date 
• duration of process or 

task 
• wait time 

money 
• cost to date 
• cost variance 
• cost of rework 

Things produced 

status of work units 
# designed 
# coded 
# tested 

size of work units 
# of requirements 
# of function points 
# of lines of code 
# of modules 
# of objects 
# of bytes in database 

output quantity 
# of action items 
# of approvals 
# of defects found 

test results 
# test cases passed 
% test coverage 

program architecture 
fan in 
fan out 

changes 
type 
date 
size 
effort expended 

problems & defects 
# of reports 
defect density 
type 
origin 
distribution by type 
distribution by origin 
#open 
# closed 

critical resource utilization 
% memory utilized 
% cpu capacity utilized 
% I/O capacity utilized 

Figure 3-8:  Measurable Attributes Associated with Software Process Entities 

It is important to note that many measurements that can be used to quantify process 

performance are the same as those used for project management. The attributes in Figure 

3-8, for example, are often important not just to process management, but to program and 

project management as well. The document Practical Software Measurement: A Guide to 
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Objective Program Oversight [JLC 96] contains similar lists of things to measure. Many of 
the measures in that document can be used for managing and improving processes too. 

In the final analysis, selecting process measures comes down to understanding the purpose 
and operation of the process and determining the inherent issues (potential problems and 
risks) that may prevent the process from meeting its purpose. In most cases, these issues 
will have an underlying basis in one or more of the common issues described in the previous 
section, In these situations, we are frequently led to selecting certain core measures—such 

as defect counts, cost, and time—to quantify the issues. 

Recall that our discussions in Chapter 2 pointed out that measures of product and process 
quality can be used to achieve process stability and determine process capability. The 
measures that you select to quantify management issues are often exactly the ones that you 
use to determine if a process is stable and capable. Remember that when you introduce 
changes to improve a process, you will need to measure the results to verify that process 

performance or capability has changed or improved. 

As you consider which entities and attributes to measure, you should begin to formulate 
goals for the measurement activities that will have to be implemented to get the information 
you need. Well-structured measurement goals define the following elements [Rombach 89, 
Shepperd 93]: 

• the object of interest (an entity). The object of interest may be a product, 
process, resource, agent, artifact, activity, or environment. It may also be a 
set or collection of other entities or objects. In short, any "thing," real or 
abstract, that you want to describe or know more about is a potential object 
for measurement. 

• the purpose. The purpose of a measurement activity may be to 
understand, predict, plan, control, compare, assess, or improve some 
productivity or quality aspect of the object. 

• the perspective. The perspective identifies who is interested in the 
measurement results. It identifies a role such as developer, maintainer, 
manager, or customer. The perspective is stated to clarify the purpose of 
the measurement activity. 

• the environment and constraints. A description of the environment 
provides a context for interpreting measurement definitions and results. 
When the context is not made explicit, it may not be understood by all who 
collect or use the reported data. The chances for misusing the data are then 
substantial, as it is very easy to implicitly assume things that are not so and 
thus arrive at erroneous conclusions. 

Templates, examples, and a process for identifying and stating measurement goals are 
illustrated in Goal-Driven Software Measurement—A Guidebook [Park 96a]. 
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Defining Process Measures7 

Data without definitions are indistinguishable from numbers. 

- source unknown 

Once you have identified your measures, you must define them: names alone will not 
suffice. You must be able to tell others exactly how each measure is obtained so that they 
can collect and interpret the values correctly. 

Measurement of software products and processes is not new. Some organizations have 
been measuring for years. At a minimum, we have all dealt with schedules. Many 
organizations have also recorded effort expenditures, perhaps weekly, if for no other reason 
than to ensure that employees get paid. Some organizations use these data in conjunction 
with measures of software artifacts to track and control progress, especially when 
developing products under contract. Some of these organizations have structured estimating 
processes that use empirical models to help them translate records from past projects into 
bids, proposals, and plans for future work. 

But despite all this measurement activity, few in the software industry would call 
measurement a success story. This is especially true when we attempt to use data that were 
collected or reported by someone else. Some reasons for our lack of success are 

• Different users of measurement data have different needs. Data 
collected for one purpose may not be suitable for another, because the 
rules used for collecting the data are inconsistent with the ways others want 
to use the data. 

• Different organizations have different established practices. In many 
cases these practices have sound reasons behind them and should not be 
changed. Moreover, it may be difficult and often impractical to change the 
way an organization collects data, just to satisfy an external need. 

• Unambiguous communication of measurement results is inherently 
difficult. Even if someone understands perfectly well how their data are 
collected, it is not easy for them to communicate adequate descriptions of 
the operational rules to others. These rules may be complex, and they may 
never have been stated explicitly. 

• Structured methods for communicating measurement results seldom 
exist. What you think you hear is often not what they meant to say. This, in 
a way, restates the ambiguity point just made, but frames it in a way that 
suggests a potential solution. 

7The discussions here are taken from Goal-Driven Software Measurement—A Guidebook [Park 96a]. 
Further information, together with guidelines for leading teams through the process of identifying, 
defining, and implementing measures, are illustrated in that guidebook. 
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Our proposal, then, is to use checklist-based frameworks to help define, implement, and 
communicate operational definitions for software measures. The primary issue is not 
whether a definition for a measure is correct, but that everyone understands, completely, 
what the measured values represent. Only then can we expect people to collect values 
consistently and have others interpret and apply the results to reach valid conclusions. 

Communicating clear and unambiguous definitions is not easy. Having structured methods 
for identifying all the rules that are used to make and record measurements can be very 
helpful in ensuring that important information does not go unmentioned. When designing 
methods for defining measures, you should keep in mind that things that do not matter to 
one user are often important to another. This means that measurement definitions—and 
structures for recording the definitions—often become larger and more encompassing than 
the definitions most organizations have traditionally used. This is all the more reason to have 
a well-organized approach. Definition deals with details, and structured methods help ensure 
that all details get identified, addressed, and recorded. They also help you deal with people 
who believe that attention to detail is no longer their responsibility. 

Criteria for Operational Definitions 

An operational definition puts communicable meaning into a 
concept. 

W. Edwards Deming, 1986 

Operational definitions must satisfy two important criteria [Park 92]: 

• communication. If someone uses the definition as a basis for measuring or 
describing a measurement result, will others know precisely what has been 
measured, how it was measured, and what has been included and 
excluded? 

• repeatability. Could others, armed with the definition, repeat the 
measurements and get essentially the same results? 

These criteria are closely related. In fact, if you can't communicate exactly what was done to 
collect a set of data, you are in no position to tell someone else how to do it. Far too many 
organizations propose measurement definitions without first determining what users of the 
data will need to know about the measured values in order to use them intelligently. It is no 
surprise, then, that measurements are often collected inconsistently and at odds with users' 
needs. When it comes to implementation, rules such as, "Count all noncomment, nonblank 
source statements" and "Count all open problems" are open to far too many interpretations 
to provide repeatable results. 

Although communicating measurement definitions in clear, unambiguous terms requires 
effort, there is good news as well. When someone can describe exactly what has been 
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collected, it is easy to turn the process around and say, "Please do that again." Moreover, 
you can give the description to someone else and say, "Please use this as your definition, 
but with these changes." In short, when we can communicate clearly what we have 
measured, we have little trouble creating repeatable rules for collecting future data. 

Examples of Operational Definitions 

Making intuition more explicit opens it to scrutiny, repetition, 
refinement. Good things! 

Stan Rifkin, 1997 (in an internet 
posting to comp.software-eng) 

Frameworks for constructing operational definitions for some frequently used size, effort, 
schedule, and quality measures have been described in three SEI technical reports [Park 
92, Goethert 92, Florae 92]. The frameworks are based on checklists, supplemented by 
forms for summarizing operational information that is not amenable to checklist treatment. 

An example of a checklist that has been used to define the counting of problems and defects 
found during system testing is shown in Figure 3-9. Here the checkmarks in the Include and 
Exclude columns spell out the rules to be followed when deciding whether or not a particular 
problem, defect, or report is to be included in a given count. Similarly, once a count has 
been made, the checkmarks tell you exactly what has been counted and what has not. The 
Value Count and Array Count columns of the checklist provide structures for requesting 
specialized counts, either for subsets of the total or for tables (arrays) that cross tabulate the 
frequencies of occurrence for sets of results from different attributes. 

The central theme in the checklists lies in stating exactly what is included in—and excluded 
from—reported results. The checklists are supported by supplemental forms that describe 
how the inclusions and exclusions were (or are to be) accomplished. These practices should 
be part of an operational definition, since they affect the way measured results should be 
interpreted. 

Although the first (and most important) use of definition checklists and supplemental forms is 
to let users of data know exactly how the data were obtained, the same kinds of descriptions 
can be used to specify how future measurements are to be made. The latter "let me tell you 
what to do" approach is the one we usually see in software organizations, but without visible 
structures for ensuring that the measurement instructions will be interpreted and executed 
consistently by all who collect the data. 

Formats for checklists like those in Figure 3-9 should be tailored to the particular problem- 
tracking process that is used within your organization. Since these processes and the terms 
that they employ vary from organization to organization, you should make sure that the 
checklists you use to define problem and defect counting fit your needs. This is true for your 
other measures as well. 
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Problem Status 
Open 

Recognized 
Evaluated 
Resolved 

Closed 

Include Exclude Value Count Array Count 
• • 

• 
• 
• 

• • 

Problem Type 
Software defect 

Requirements defect 
Design defect 
Code defect 
Operational document defect 
Test case defect 
Other work product defect 

Other problems 
Hardware problem 
Operating system problem 
User mistake 
Operations mistake 
New requirement/enhancement 

Undetermined 
Not repeatable/Cause unknown 
Value not identified 

Include Exclude Value Count Array Count 

• • 
• • 
• • 
• • 

• 
• 

• 
• 
• 
• 
• 

• 
• 

Uniqueness 
Original 
Duplicate 
Value not identified 

Include Exclude Value Count Array Count 
• 

• • 
• 

Criticality 
1 st level (most critical) 
2nd level 
3rd level 
4th level 
5th level 

Value not identified 

Include Exclude Value Count Array Count 
• • 
• • 
• • 
• • 
• • 

• 

Urgency 
1 st (most urgent) 
2nd 
3rd 
4th 

Value not identified 

Include Exclude Value Count Array Count 
• 
• 
• 
• 

• 

Figure 3-9:  A Checklist-Based Definition for Counting Defects (page 1 of 2) 
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Finding Activity 
Synthesis of 

Design 
Code 
Test procedure 
User publications 

Inspections of 
Requirements 
Preliminary design 
Detailed design 
Code 
Operational documentation 
Test procedures 

Formal reviews of 
Plans 
Requirements 
Preliminary design 
Critical design 
Test readiness 
Formal qualification 

Testing 
Planning 
Module (CSU) 
Component (CSC) 
Configuration item (CSCI) 
Integrate and test 
Independent V & V 
System 
Test and evaluate 
Acceptance 

Customer support 
Production/deployment 
Installation 
Operation 

Undetermined 
Value not identified 

Include Exclude Value Count Array Count 

• 
• 
• 
• 

• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 

• 
• 
• 

• 
• 
• 

• 

Finding Mode 
Static (non-operational) 
Dynamic (operational) 
Value not identified 

Include Exclude Value Count Array Count 
• 
• 

• 

Figure 3-9:  A Checklist-Based Definition for Counting Defects-continued (page 2 of 2) 
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Creating Your Own Definition Frameworks 
There are of course many measures for which checklists and descriptive forms do not yet 
exist. When you propose measures that have no current checklists, you should develop 
similar (or equivalent) vehicles for communicating the rules and procedures that you want 
used to capture and record your data. Checklists are useful, especially when inclusion and 

exclusion decisions affect results. 

Whatever frameworks you choose, your structured methods must tell the people who collect 
the data exactly what is to be included in (and excluded from) the values they report to you. 
Where it makes a difference—and it usually does—they must also describe how the 
measurements will be carried out. An appropriate definition framework ensures that any 
variation in the method for measuring that could affect either the values themselves or the 
way they should be interpreted gets described. 

When constructing checklists and supporting forms for defining software measures, you will 
find that the best way to ensure full coverage and achieve consensus is to focus not on 
telling people what they should do, but rather on identifying what you and others need to 
know to use the data correctly. Not only will this minimize controversy and confrontation, but 
once you have a structure that communicates all relevant information about a measure- 
ment's result, it is easy to use that structure to tell others how to collect the data you want. 

3.3     Integrating Measures with the Software Process 
The third stage in measurement planning (highlighted in Figure 3-10) is to integrate your 
defined measures with your software processes. In this section, we discuss the three steps 
that comprise this stage: analysis, diagnosis, and action. Analysis involves identifying the 
measures that your organization collects now and how they are being used. Diagnosis 
means evaluating the extent to which these measures can be used to meet your newly 
identified needs and determining where additional work is needed. Action is directed at 
translating the results of analysis and diagnosis into action plans for collecting and using the 
additional data you seek. These steps are described in the paragraphs that follow. 

Select and Goals I—S.       Identify pt>. oeieui emu      m ^^ Integrate with 
Software 
Process 

Figure 3-10: Measurement Planning Activities—Step 3 

Analysis of Existing Measurement Activities 
Analysis establishes the baseline for the work that follows. Knowing what measures your 
organization collects now and how people are using them gives you a starting point for 
implementing the measures you have defined. If your organization is like most, you will not 
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be starting from scratch. Some measurement activities will already be in place, and you 
should use these as springboards if you can. Revolutionary approaches often meet strong 
resistance. Where possible, it makes sense to build on things that are currently in use, 
strengthening them in the process, and refocusing them where necessary. 

When analyzing your existing measures and measurement practices, you should ask 

questions such as 

• What data elements are required for my measures? 

• Which ones are collected now? 

• How are they collected? 

• Which processes provide the data? 

• How are the data elements stored and reported? 

Often you will find that there are more potential data sources than were apparent at first 
glance. The mental models that you create for your processes can help you locate these 
sources. For example, several sources often exist for data about defects and problems. The 
situation shown in Figure 3-11 is typical of many organizations [Florae 92]. Here people who 
build products (product synthesis) write problem reports; teams that inspect products (as in 
peer reviews) prepare inspection reports; participants in formal milestone reviews produce 
action items; test groups produce test reports; and customer support groups document 
customer problems. All of these reports are followed by analyses and corrective actions, and 
the results and status are usually recorded somewhere, often in one or more databases. 
You should find and examine these databases to see what they can give you. 

Product 
Synthesis Inspections Reviews Testing 

Customer 
Support 

r   ? I t t T 
Problem 
Report 

inspection 
Report 

Review 
Report 

Test 
Report 

Customer 
Problem 

Problem- 
tir T t t t 

Tracking — Analvsis and Correctiv e Actions 
Data 

«7 ▼ ■tar 

* 

__ Activity-Specific Databases 

Figure 3-11: Sources for Problem-Tracking Data 
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Diagnosis of Existing Measures 
Diagnosis means evaluating the data elements that your organization is collecting now, 
determining how well they meet the needs of your goal-driven measures, and proposing 

appropriate actions for 

• using the data 

• adapting the data to your needs 

• adapting your needs to the data 

• obtaining what is missing 

Where analysis is fact-finding, diagnosis is evaluative and judgmental. When diagnosing, 
you are identifying alternatives and setting the stage for finding solutions. You are asking 

questions such as 

• What existing measures and processes can be used to satisfy our data 
requirements? 

• What elements of our measurement definitions or practices must be 
changed or modified? 

• What new or additional processes are needed? 

Action to Integrate Measurements 
Action means translating the results of your analyses and diagnoses into implementable 
steps. It is concerned with finding solutions and making the solutions happen, and it includes 
identifying tasks, assigning responsibilities and resources, and following through to make 
sure that the actions happen. 

Action starts with identifying the elements that you will build on or address in your 
measurement plans. Some things you will want to do before writing your plans are 

• Identify the sources of data within your existing software process(es). 

• Define the methods that will be used to collect and report the data. 

• Identify (and specify) the tools that will be required to collect, report, and 
store the data. 

• Determine your requirements for points in time and frequencies of 
measurement. 

• Document your data collection procedures in detail: 

- Identify responsible persons and organizations. 
- Determine where, how, and when to collect and report. 
- Create sketches for the data collection records you will use. 

• Determine who will use the data. 
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• Define how the data will be analyzed and reported. 

• Prepare a data definition and collection process guide. 

You should also analyze your data storage and access requirements. This includes 
identifying or determining 

• your historical retention needs 

• who will collect, store, maintain, and access the data 

• the organizational levels to be served (Serving more than one 
organizational level often translates into a need for more than one 
database.) 

• the granularity of the data (Will the data be retained as initially recorded or 
aggregated in some way?) 

• the procedures to be used for dynamically editing and verifying data as the 
data elements are entered into the database 

• the number of people with access to the data 

• the need for recording the definitions associated with the data, so that users 
can tie the data to the descriptive information that is needed to use the data 
correctly 

In addition, you should pay close attention to issues of data privacy wherever you encounter 
them. This is especially important for data that could be used (or perceived to be used) to 
evaluate the performance of individuals or teams. Much anecdotal evidence exists to 
suggest that the surest way to make measurement fail is to have people suspect that the 
measures might be used against them. 

Tasks for Defining Your Measurement Processes 
When you are preparing to write your measurement plans, it helps to have a checklist such 
as the one in Figure 3-12 to ensure that nothing gets overlooked. This checklist can be 
transformed easily into a display for summarizing your status with respect to defining the 
measurement process you intend to implement, as illustrated in Figure 3-13. Here codes 
have been used to show the status of each task. Actions to complete the unfinished tasks 
are things that you will want to address as you prepare your plan. 
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Checklist for Preparing a Measurement Action Plan 

Define the data elements. 

Define the scales to be used for measuring and recording 
observed values for each data element. 

Define the frequencies of collection and the points in the 
process where measurements will be made. 

Define the timelines required for moving measurement results 
from the points of collection to databases or users. 

Create forms and procedures for collecting and recording the 
data. 

Define how the data are to be stored and how they will be 
accessed. Identify who is responsible for designing the 
database and for entering, retaining, and overseeing the data. 

Determine who will collect and access the data. Assign 
responsibilities for these actions. 

Define how the data will be analyzed and reported. 

Identify the supporting tools that must be developed or 
acquired to help you automate and administer the process. 

Prepare a process guide for collecting the data. 

Figure 3-12: Checklist for Preparing a Measurement Action Plan 

Action Plans 
Once you know what you have to start with (analysis), how well your present measures 
meet your business needs (diagnosis), and the actions that you will to take to meet the 
remaining needs (action), you are ready to prepare plans for implementing the actions you 
have identified. Your next step is to write the plans. These plans should translate your 
objectives into operational actions. They should make the measurement objectives clear; 
describe the goals and scope of the efforts and their relationships to other functional 
activities; spell out the tasks, responsibilities, and resources needed; provide for progress 
tracking and risk management; and establish frameworks and resources for sustained 
successful operation and evolution. 

A template for assembling measurement action plans is presented in Appendix B. Keep in 
mind that there is no need to wrap all your measurement activities into a single, monolithic 
plan. You are not trying to establish an empire—you just want to get and use the data you 
need. Several small plans may be easier to implement and sustain than a single all- 
encompassing endeavor. As time passes, your needs will change. With a modular planning 
strategy, you will find it easier to update, augment, or replace your plans when the need 
arises. 
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Planning tasks 

Data elements defined 

Data collection frequencies and points 
in the software process defined 

Timelines defined for getting measure- 
ment results to databases and users 

Data collection forms defined 

Data collection procedures defined 

Data storage, database design, and 
data retention responsibilities defined 

Who will collect and who will access 
the data identified 

Analysis processes defined 

Reporting processes defined 

Supporting tools identified and made 
available 

Process guide for data definition and 
collection prepared 

1 2 

Data element 

3        4        5         6        7 

Y N 60% Not 
Doc'd 

Y? • • 

50% N 60% Not 
Doc'd 

• • • 

N N 30% Not 
Doc'd 

• • • 

N N N N • 

N N • • 

N N • • 

N N • • 

N N 

N N 

N N 

Y 

Figure 3-13: Status of Action-Planning Activities 
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4      Applying Measures to Process Management—Part 1: 
Collecting and Retaining Data 

Important questions in science and industry are how and under 
what conditions observations may contribute to a rational 
decision to change or not to change a process to accomplish 
improvements. A record of observations must accordingly 
contain all the information that anyone might need in order to 
make his own decision. 

W. Edwards Deming, 1986b 

Of what value is the theory of control if the observed data 
going into that theory are bad? 

Walter A. Shewhart, 1931 

In the previous chapter, we discussed the measurement planning activities associated with 
process management. In this chapter and the three that follow, we turn our attention to 
applying the measures in ways that support the decisions associated with process 
management. Figure 4-1 highlights the focus of our discussions. 

Customer Requirements 
& Business Needs 

Process 
Improvements 

Process 
Definitions Product 

Measurements 

Figure 4-1:  How Applying Measures Relates to the Key Responsibilities of 
Process Management 
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Applying measures is the operational phase of the measurement process. It consists of 
collecting and retaining process management data, analyzing the data, and acting on the 
results. Collecting and retaining data are prerequisites for analysis. Analyzing the data in the 
context of the issues at hand then leads to using the results to control and improve the 
software process and its subprocesses. 

This chapter and the two that follow address the subactivities of applying measures in the 
sequence shown in Figure 4-2. 

Collect and 
Retain 
Data 

Chapter 

Figure 4-2:  Applying Measures: The Subactivities 

4.1     General Principles 

An element of chance enters into every measurement; hence 
every set of measurements is inherently a sample of certain 
more or less unknown conditions. Even in the few instances 
where we believe that the objective reality under measurement 
is a constant, the measurements of this constant are 
influenced by chance or unknown causes. Hence, the set of 
measurements of any quantity, even though the quantity itself 
be a constant, is a sample of a possible infinite set of 
measurements which we might make of this same quantity 
under essentially the same conditions. 

From this viewpoint, measurement is a sampling process 
designed to tell us something about the universe in which we 
live that will enable us to predict the future in terms of the past 
through the establishment of principles or natural laws. 

Walter A. Shewhart, 1931 

The operational activities of measurement begin with collecting and retaining data. The 
procedures that you defined for collecting and retaining data must now be integrated into 
your software processes and made operational. This means putting the right people, 
sensors, tools, and practices into the processes in the right places. It also means capturing 
and storing the data for subsequent use in analysis and process improvement. 
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The principal tasks associated with collecting and retaining data for process management 

are as follows: 

• Design the methods and obtain the tools that will be used to support data 
collection and retention. 

• Obtain and train the staff that will execute the data collection procedures. 

• Capture and record the data for each process that is targeted for 
measurement. 

• Use defined forms and formats to supply the collected data to the 
individuals and groups who perform analyses. 

• "Monitor the execution (compliance) and performance of the activities for 
collecting and retaining data. 

The following sections discuss these tasks in more detail. 

4.2     Collecting Data 

Getting management's help can be difficult. We had one 
manager who said we can gather any metrics we want as long 
as it doesn't cost him any money or bother his people. How's 
that for enlightenment? 

Dave Kleba, Abbott Laboratories, 1996 

Once you have selected and defined your measures and planned your implementation 
actions, you are ready to begin collecting data. Collecting data is more than just making 
measurements. It consists of implementing your plans, ensuring that they work, and 
sustaining the measurement activities that result. These actions will be facilitated if you 
document in detail your procedures for collecting, recording, and reporting data. 
Documenting your procedures involves 

• identifying the responsible persons and organizations 

• specifying where, when, and how measurements will be made 

• defining the procedures to be used for recording and reporting results 

• providing standard "fill-in-the-blank" forms to simplify manual recording of 
the data 

The complexity of your data collection processes will increase as additional organizations or 
software processes become involved. Each organization or process may use a different tool 
or method to obtain the "same" data. If you wish to compare or aggregate the data you 
collect, you must ensure that the methods different people use to collect the data are, in fact, 
collecting exactly the same kinds of data. That is, your different tools and procedures should 
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be counting, extracting, or otherwise processing data in ways that produce equivalent 
results. The concept of well-defined data that was defined in Chapter 2 comes into play 
here. When it is possible to do so, providing standard tools such as code counters and work 
breakdown structures will make achieving consistency and common understandings easier. 

Having a data collection guide that fully describes your data definitions and collection 
processes will shorten the amount of time required to stabilize your measurement results. It 
will also improve the quality of the data you collect. 

Collecting data is a process. Like any other process, it must be monitored to ensure not only 
that the data are being collected, but that they are timely, complete, ungarbled, authentic, 
accurate, and otherwise of good quality. In short, if the results are to be reliable, the 
collecting process must be stable and under control. This implies that the performance of the 

measurement process itself should also be measured. 

Process Performance Data 

No count or measurement has any meaning apart from its 
context. The context for any value will always determine how 
that value should be analyzed and how it should be 
interpreted. 

Donald J. Wheeler, 1995 

The order in which the measurements were made should 
always be preserved in recording data for a frequency 
distribution. 

Grant and Leavenworth, 1996 

The fact that data will subsequently be analyzed can impose requirements on data collection 
in ways that may not be obvious. For example, measures of process performance that are 
used to assess process stability and capability require that special attention be paid to four 
important issues: 

• time sequence. The order in which observations are made contains crucial 
information for estimating the inherent variability in a process. Moreover, 
knowledge of the sequence and of its relationships to time and process- 
related events is what enables you to identify the point where assignable 
causes of variation entered a process. This helps greatly in identifying the 
causes and preventing recurrences. You should ensure that any 
measurements collected for estimating, controlling, or improving process 
performance are accompanied by records of the sequence of observations. 
Where feasible, it helps also to relate the sequence to time and to any 
events or milestones that might affect measured values. 

~6Ö CMU/SEI-97-HB-003 



context data. Analyzing control charts requires information about the 
context in which the data were produced in order to properly interpret the 
record of performance that is plotted on the charts. Thus, as pointed out in 
Chapter 2, process performance data should always be accompanied by 
information that permits questions like the following to be answered 
[Wheeler 92]: 

- What do the individual values represent? What are these numbers? 
- How were the values obtained? Who obtained them? When or how 

often? 
- What sources of variation are present in the data? 

Your data collection process must include practices that ensure that context 
data are captured when reporting product and process measurements. 

rounding of data values. Your collection processes must ensure that the 
scales for measuring and recording data are of appropriate granularity and 
that recorded values are not rounded inappropriately. Either condition can 
cause control charts to generate out-of-control signals even when the 
process is in a state of statistical control. A brief illustration of the types of 
problems that insufficiently precise measurement scales can cause is 
provided in Section 7.5 of this guidebook. Additional examples and 
guidelines related to this subject can be found under the topic of 
"Inadequate Measurement Units" in Wheeler's books [Wheeler 89, 92, 95]. 

measurement stability. When you institute new measures or revise 
existing measures, your data collection procedures may have to be 
changed as well. This can result in destabilizing the measurement process. 
Testing and evaluating new or changed data collection processes with pilot 
runs can help shake out problems with the procedures and avoid collecting 
and retaining inappropriate data. 

Process Compliance Data 
Collecting compliance data typically requires seeking out sources other than those available 
directly from measures of operating processes. Two ways to obtain process compliance 
data are enumerated below. As always, the types and kinds of data required, together with 
the cost and availability of data, will determine which methods are best for you. 

1. One way to investigate the extent of compliance is to review the 
process(es) in question. Generally this means conducting a series of 
structured interviews with project personnel. The responses can be 
combined with reviews of other organizational data such as budgets, 
reports, policies, product characteristics, or process documentation to 
provide measures of both fitness and use. This approach is particularly 
useful when looking for potential causes of instability or excessive 
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variability, as we pointed out in Chapter 2. It is also useful when 
establishing benchmarks for process improvement. 

2. A second approach is to conduct periodic surveys where software 
managers and technical staff members answer questions regarding their 
compliance to the processes of interest. This approach is generally less 
expensive than the first approach, but the results may be less reliable due 
to differing interpretations and perceptions and to instincts for self- 
preservation among the people answering the survey. A well-designed 
survey can compensate for the inherent subjectivity in responses by asking 
questions that elicit related evidentiary data. 

Process managers will often find it useful to conduct reviews or surveys to obtain a fitness 
profile of their project's personnel, tools, or methodologies. This can be especially true at the 
start of a project (or at periodic intervals in a long-term project) to help determine the 
training, tools, and technologies that may be needed to execute at the desired levels of 

process performance. 

The use of surveys can be even more helpful at the organizational level. A survey is a 
relatively inexpensive and rapid method for gathering data to identify trends across projects. 
With careful survey design and by capturing relevant project, process, and environmental 
data and retaining the results over several survey periods, you can obtain trend information 
that can serve as a basis for stabilizing and sustaining process activities and for developing 
better tools and training. In addition, survey data can provide benchmarks and context data 
for project estimating and process improvement. 

As just one example of the possibilities, Dillman describes an approach for self-administered 
surveys called the Total Design Method (TDM) [Dillman 83]. His experience suggests that 
response rates greater than 75% can be obtained with surveys averaging about 10 pages. 

At both project and functional levels, capturing process compliance data dynamically can 
alert managers to deteriorating compliance and help head off process instabilities and 
performance problems before they occur. 

4.3     Retaining Data 

Data is like garbage. You better be sure what you're going to 
do with it before you collect it. 

Mark Twain (Apocryphal?) 

Retaining data inherently involves creating and using one or more databases to organize 
and save the data for later use. Depending on the nature of your measurement activities, 
this may be a reasonably simple task or a very complex and technically demanding one. In 
either case, it is important to give serious consideration to the data retention system that will 
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be employed. For example, while hard-copy forms may suffice for some data collection 
purposes, experience has shown that paper forms are often inadequate for retaining and 

aggregating measured results. 

A personal computer database system and a full-functioned spreadsheet program may be 
sufficient for retaining and analyzing data for many processes. However, the size and 
complexity of the retention system will increase significantly if there is a need to support 
multiple projects or multiple organizations, or if you are using the measurement results for 
multiple purposes. The length of time you must retain the data can also influence your 
choice of a database system. For example, data for process management will often be 
retained and used well beyond the duration of individual projects. 

A project management database, if it exists, may well serve as the basis for retaining 
process measurements for process management. This is something to be considered 
seriously before undertaking to develop a separate process management database, as there 
are often many overlaps between data collected for managing projects and data collected 

for managing processes. 

You should consider the issues listed below when planning a process management 

database. 

Database Planning Issues 

Measurement Definitions 
• The desire to standardize measures for data retention and analysis may conflict 

with software process tailoring or with the legitimate needs of projects to define 
and collect data in ways that address issues that are important to them. It may 
be unwise or impossible (or require added effort) to insist that all projects use 
the same measurement definitions. 

• One alternative to standardizing measurement definitions is to permit freedom 
of definition (perhaps within prescribed limits), but to require standardized 
reporting via standardized formats for the definitions of the measures and 
measurement processes used. 

Multiple Databases 
• Do differing user needs, responsibilities, or levels of management require 

separate databases? If the answer is yes, a monolithic "software process 
database" is an unlikely choice, and the following issues arise: 

- How many databases? 
- Who will operate them, and where? 
- How will the databases be coordinated? (This involves addressing 

issues of concurrency, consistency, and propagation of data 
corrections and updates.) 
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Database Design Goals (Recommendations) 
• Capture and retain definitions and context descriptions, not just direct 

measurement data. 
• Tie measured values to measurement definitions, rules, practices, and tools 

used. 
• Tie measured values to the entities and attributes measured. 
• Tie measured values to the contexts and environments in which they were 

collected (product, environment, and process descriptors; process and project 
status; time and place measured; method of measurement; and so forth). 

• Accommodate process tailoring (by recording descriptions of process 
specializations, tailorings, and other differences among processes). 

• Accommodate evolving measurement definitions and process descriptions. 
• Address linking to, accessing, and coordinating with other databases, such as 

those used for time and cost reporting, cost estimating, configuration 
management, quality assurance, personnel, and so forth. 

• Avoid storing indirect measures (such as defect densities and rates of change) 
that can be computed by users from directly measured results. There are three 
reasons for this advice: 

- Storing computed values introduces redundancies in databases that 
are difficult to keep synchronized. When the underlying data change, 
indirect measures may not get recomputed. 

- If only the results of computations are stored, essential information 
easily becomes lost. 

- Other people may want to compute alternative indirect measures or 
compute them differently, so the underlying values will need to be 
retained anyway. 

Logistical and Timeline Issues 

• What are the media and mechanisms for moving data from the point of 
measurement to the database? 

• How fast is the process from measurement to data entry? Will the data be 
timely and up to date? 

• What are the provisions for coordinating the database with automated 
measurement tools? Can these provisions be automated? 

Rules and Policy Issues 

• What are your privacy objectives? 
• What are your proprietary data objectives? 
• What are your data access objectives? 
• What are your retention objectives? 
• What are your archiving objectives? 

64 CMU/SEI-97-HB-003 



Database Operation Issues 
Once you have settled the database planning issues, you should document your operational 

procedures in detail. This includes identifying 

• who will enter and maintain the data 

• who can access the data 

• levels of access—for example, you may not want certain financial data to 
be available to everyone who has access to staff-hour time records. 

• where the data will be retained 

• the tools you will use, including the editing and retrieval mechanisms 

Database Management Issues 
Some additional database management issues that you should address are listed below. 
None of these issues are unique to software process management. We provide the list here 
to serve as a checklist and a reminder that the methods you use to retain and access data 
play a significant role in the success of any measurement activity. 

Operating the Database 
- responsibilities 
- practices & tools for preventing 

simultaneous editing 
- practices & tools for preventing 

contamination & corruption of 
previously verified data 

- tools & training to support 
browsing, searching, retrieval, and 
display 

- backup practices (frequency & off- 
site storage) 

- funding 
- training 

Access 
- Who is permitted to enter or 

change data? 
- Who is permitted to access data? 
- Who grants authority to access or 

change data? 
- Who enforces access and change 

authority? 
- What tools & practices will be used 

to support controlled access? 

Entering Data 
- responsibilities 
- coordinating data entry with data 

verification 
- funding 
- training 

Retaining Data 
- where? 
- how long? 
- format & media 
- backup practices (frequency and 

off-site storage) 
- Who is responsible? 
- funding 

Archiving 

- where? 
- how long? 
- format & media 
- backup practices (frequency & off- 

site storage) 
- Who is responsible? 
- funding 
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Privacy (e.g., personnel data & 
personal performance data) 

- Is there a need to isolate protected 
data from public data? 

- Who grants authority to access 
protected data? 

- Who enforces access rules? 
- What tools & practices will be used 

to protect privacy? 

Protecting Proprietary Data 

- Who designates proprietary data? 
- How is proprietary data identified? 
- What tools & practices are used to 

protect proprietary information? 
- Who can authorize access to or 

use of proprietary data? 
- What are the ground rules for 

authorizing access? 

Security (provisions for handling 
classified information) 

- Is there a need for security 
procedures? 

- Is multilevel security a 
requirement? 

- What tools & practices will be used 
to protect security? 

System Design 

- hardware selection 
- software selection 
- database design (structure) 
- communications among databases 
- maintenance 
- evolution 
- operational support 
- funding 
- training 
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5      Applying Measures to Process Management—Part 2: 
Analyzing Data 

...probability theory does not apply simply because a 
phenomenon is attributable to chance causes. 

Walter A. Shewhart, 1931 

Classical theory is based upon the concept of inference from a 
single sample from a statistical universe, the ordering within 
the sample being ignored, while control theory must be based 
upon evidence provided by a succession of samples, ordering 
within the sample, and other pertinent information. 

Walter A. Shewhart, 1943 

Analysis is the second major step in the operational phase of a measurement process. This 
chapter describes and illustrates some important analytic tools, and it shows how the tools 
can be used to help assess the stability, capability, and performance of a software process 
or activity. Figure 5-1 highlights the focus of the discussions. 

Collect and 
Retain 
Data 

Chapter 

Figure 5-1:   Chapter Focus : Analyzing the Data You Collect 

The concepts and 
methods in the following 
sections deal primarily 
with the use of control 
charts for managing and 
improving process per- 
formance. Control charts are techniques for analyzing process stability, capability, and 
performance. They have been used with much success in other industries, but do not seem 
to have been widely adopted in software organizations. To be effective, control charts and 
the associated methods of statistical quality control should be used within the broader 
context of the goals you have established and the activities you perform to achieve those 
goals. The preceding chapters have set this context. The focus of this chapter is on the 
quantitative issues that underlie effective use of control charts for guiding process 
management and improvement actions. 

5.1     Separating Signals from Noise 

"...the method of attack is to establish limits of variability 
...such that when [a value] is found outside of these limits, 
looking for an assignable cause is worthwhile." 

Walter A. Shewhart, 1931 
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Data are generally collected as bases for action. No matter what the data or how the values 
are presented, you must always use some method of analysis to extract and interpret the 
information that lies in the data. Making sense of data is a process in itself. This is illustrated 

schematically in Figure 5-2. 

Since data generally consist of both noise and signal, the values that are reported must be 
filtered somehow to separate the signals from the noise that accompanies them. This 
filtration may be based (subjectively) upon a person's experience and his or her 
presuppositions and assumptions, or it may be based on a more formalized approach. 
Without formal and standardized approaches 
for analyzing data, you may have difficulty 
interpreting and using your measurement 
results. 

Data     ^^>    Analysis      Interpretation^ 

When you interpret and act on measurement 
results,   you   are   presuming   that   the lnput Transformation     output 

measurements   represent   reality.   Unless ._.        c „   . ,        . ..     _ K ,,        , Figure 5-2:   Interpretation Requires 
legitimate signals can be distinguished from the Al' 
noise that accompanies them, the actions that 
you take may be totally unwarranted. Acting on 
noise as if it were signal serves only to amplify instabilities and increase the variability in 
process results. To use data safely, you must have simple and effective methods not only 
for detecting signals that are surrounded by noise, but also for recognizing and dealing with 
normal process variations when no signals are present. 

The reason for analyzing process data is to draw inferences that can be used to guide 
decisions and actions. Drawing inferences (i.e., conclusions and predictions) from data 
depends not only on using appropriate analytical methods and tools, but also on 
understanding the underlying nature of the data and the appropriateness of assumptions 
about the conditions and environments in which the data were obtained. 

There are two ways to obtain statistical inferences—from enumerative studies and from 
analytic studies [Deming 75]. The differences between the two are important and affect the 
kinds of inferences that can be drawn from measurement results. Techniques and methods 
of inference that are applicable to enumerative studies lead to faulty design and inference 
for analytic problems. The differences between enumerative and analytic studies are 
discussed in some detail in Section 7.1. The implications of the differences deserve 
considerable reflection before you begin interpreting and acting on the results of any 
analysis. We will defer discussing these implications, though, until you have a good 
understanding of some of the tools that are available to help you. For now, we simply point 
out that most analyses of process issues are analytic studies, and the methods in this 
chapter are aimed at guiding valid interpretations in these kinds of studies. 
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5.2     Evaluating Process Stability 

Students are not warned in classes nor in the books that for 
analytic purposes (such as to improve a process), distributions 
and calculations of mean, mode, standard deviation, chi- 
square, t-test, etc. serve no useful purpose for improvement of 
a process unless the data were produced in a state of 
statistical control. The first step in the examination of data is 
accordingly to question the state of statistical control that 
produced the data. The easiest way to examine data is to plot 
points in order of production to learn whether any use can be 
made of the distribution formed by the data. 

W. Edwards Deming, 1986 

In Chapter 2, we introduced the concepts of process stability and process capability. We 
then illustrated the concepts in the context of measuring process performance. We return 
now to these topics and look at some of the methods that can be used to quantify and 
evaluate process performance. 

The Importance of Stability 

When a control chart indicates no special cause present, the 
process is said to be in statistical control, or stable. The 
average and limits of variation are predictable with a high 
degree of belief, over the immediate future. Quality and 
quantity are predictable. Costs are predictable. "Just in time" 
begins to take on meaning. 

W. Edwards Deming, 1993 

...if a control chart shows a process is "in control," it means 
that the hypothesis of random variation is a reasonable one to 
adopt for managerial purposes. When the chart fails to show 
control, then other action is reasonable. 

Acheson J. Duncan, 1974 

As we pointed out earlier, process stability is central to any organization's ability to produce 
products according to plan. It is also central to improving processes and to producing better 
and more competitive products. The facts are these: 

• Without stability and the associated knowledge of what a process can do, 
we have no way to distinguish signals in measured values from the random 
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noise that accompanies them.  Measurements then easily lead to 
inappropriate actions. 

• Without a history of stable performance, uncontrolled excursions can occur 
at any time. We then have no rational basis for extrapolating observed 
performance to future situations, and all plans that we make are at risk. 

• Without knowing what the stable level of performance is, we have no basis 
for recognizing assignable causes that signal improvement opportunities. 

• Without stability, we have no repeatable process to use as a baseline for 
process improvement. In fact, some would say that we have not one 
process, but many—all different. Effects of improvement actions may then 
be indistinguishable from other assignable causes. 

Therefore, to use product and process measures for predicting future results or as bases for 
process improvement (two instances of analytic studies), we must first ensure that the 
processes are behaving stably. 

Stability Concepts and Principles 

Original data plotted in the order of production may provide 
much more information than is contained in the distribution. 

W. Edwards Deming, 1986b 

In a stable process, the sources of variability are due solely to common causes." All 
variations in a stable process are caused by inherent factors that are part of the process 
itself. Variations due to "assignable causes," such as those caused by operator errors, 
environmental changes, deviations from the process, and changing characteristics in raw 
materials and resources, have been either removed from the process and prevented from 
reentering (if detrimental) or incorporated as a permanent part of the process (if beneficial). 

A stable process is one that is in statistical control—the underlying distributions of its 
measurable characteristics are consistent over time, and the results are predictable within 
limits. This is illustrated in Figure 5-3. Each X in the figure represents a measured value of a 
given characteristic of a process or product. In this example, random samples of four units of 
a product were selected at five points in time. The locations of the Xs represent the actual 
measured values. Different values were observed at each sampling point due to inherent 
process variability (common cause variation). The curves in Figure 5-3 represent the 
distribution of the underlying variability. When a process is stable, the same curve 
represents the distribution of the product characteristic at each point it is measured. The 
process will remain stable as long as the distribution remains unchanged and unshifted. 

To test a process for stability, we need to know how variable the values are within the 
samples at each measurement point, and we need to compare this to the variability that we 
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Frequency 
of 

Measured 
Values 

Variation In 
Measured Values 

Figure 5-3: An Idealized Process in Statistical Control 

observe from one sample to another. More specifically, we need to determine if the variation 
over time is consistent with the variation that occurs within the samples. We also need to 
detect possible drifts or shifts in the central tendency of the measured values. Shewhart's 
control charts provide a simple and effective means for conducting these tests. They are the 
statistical tools of choice to use when determining whether or not a process is stable 
[Wheeler 92, 93, 95]. 

Let's look again at Figure 5-3. If we have reason to believe that the variability at each 
sampling point is likely to be due solely to common cause variation, it makes sense to treat 
each sample as a homogeneous subgroup. We can then evaluate changes in central 
tendency by computing the average 
of the four measurements within 
each subgroup and plotting the 
results on a time scale. This lets us 
view the performance of the process 
in a time (or sequence) dimension. 

Average 
(X-bar) 

■ UCL 

^ 
• CLx 

• LCL 

The upper portion of Figure 5-4 
shows the results for the values 
illustrated in Figure 5-3. This is 
called an X-bar or averages chart. 
The changes in the averages show 
the observed variation in central 
tendency from one subgroup to the 
next. Similarly, the range of the 
values within each subgroup can be 
calculated and plotted, as shown in 
the lower portion of Figure 5-4. This 

t2 t3 t4 t5 

Range 
(R) 

■ - UCLR 

CLR 

I 
t1 t2 t3 t4 t5 

Figure 5-4:  X-Bar and Range Charts for a 
Process That Is in Control 
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is called an R chart. R charts show the observed dispersion in process performance across 
subgroups.8 Control limits for X-bar and R charts can then be calculated from the range data 
and subgroup averages. Calculating control limits is illustrated later in this chapter. 

One of the most important principles (and skills) associated with control charting involves 
using knowledge of the process to select subgroups that contain, insofar as possible, only 
common cause variation. This is called rational subgrouping. The purpose of rational 
subgrouping is to permit the computation of estimates for standard deviations (values for 
sigma9) that are uncontaminated by assignable cause variations. This both narrows the 
control limits and provides the highest possible reliability for detecting unusual variations 

(signals) with a minimum of false alarms. 

With control charts like the ones in Figure 5-4, we have a picture that tells us how the 
process has behaved with respect to a particular product or process characteristic over the 
period that was examined. The R chart tells us that the range of each subgroup (the 
difference between the smallest and the largest value in that subgroup) did not exceed the 
limits labeled UCLR (upper control limit, range). At the same time, the X-bar chart shows 
that none of the subgroup averages fell outside the upper or lower control limits (UCL and 
LCL) for averages of size 4. Finally, neither chart suggests any systematic or nonrandom 
patterns in the measured values over the period studied. 

In short, plotting this set of data on X-bar and R control charts gives no "out-of-control" 
indications. This should be no surprise, since we stipulated at the outset that the process 
was in control. By using control charts, we have merely illustrated graphically the empirical 
conditions that must be satisfied for a process to be considered stable. 

Figure 5-5, on the other hand, shows a process that is out of control. By plotting the mea- 
sured values on averages and range (X-bar and R) control charts as in Figure 5-6, we see 
that the X-bar chart shows the average of the second subgroup to be above the upper con- 
trol limit. This by itself is sufficient to suggest that the process is not in control. The subgroup 
range also exceeds its upper control limit at t5. This is another indication that one or more 
assignable causes may have affected the process, and that the process is out of control. 

8Another form of chart called an S chart can also be used for this purpose, but the computations are 
somewhat more involved. 

Statisticians use the lower case Greek letter a (sigma) to designate the standard deviation of a 
random variable. Since a cannot be observed directly, the best we can do is to estimate its value 
from the measurements we make. As we shall see shortly, there are several ways to do this. Strictly 
speaking, the symbol for a computed estimate (a statistic) should be different from the symbol used 
for the parameter itself. The most commonly used symbol today for an estimated standard deviation 
is a. When working with control charts, though, the tradition is to use the simpler notation, even 
though this can be confusing. 
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Figure 5-5:  An Idealized Out-of-Control Process 
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Figure 5-6:  X-Bar and R Charts for an Out-of-Control Process 
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The Structure of Control Charts 

One sees in practice countless control charts, most of which 
are unfortunately used incorrectly. It is to be feared that many 
of them do more harm than good. A necessary requirement for 
successful use of a control chart is a smattering of knowledge 
of the theory behind it. 

W. Edwards Deming, 1986 

There is more to preparing and using control charts than selecting a chart type, plotting data, 
and calculating control limits. While we will try to alert you to some of the factors that should 
be considered, if you are not currently conversant in the use of control charts, you should 
consult one of the many texts available on the subject. The books of Wheeler, Pyzdek, and 
Montgomery are particularly good at describing how to construct and use control charts 
[Wheeler 92, 93, 95; Pyzdek 90, 92; Montgomery 96]. These references are well grounded 
in theory, but their real focus is on understanding and applying basic principles and avoiding 
pitfalls. They do not require an educational background steeped in statistics or advanced 
mathematics. 

To begin, all classical control charts have a center line and control limits on both sides of the 
center line. Both the center line and the limits represent estimates that are calculated from a 
set of observations collected while the process is running. The center line and control limits 
cannot be assigned arbitrarily, since they are intended to reveal what the process can 
actually do (its current level of performance), not what you or anyone else wants it to do. 

The values plotted on a control chart can be values obtained from any statistic that has been 
defined on the sequence of individual measurements.10 Subgroup averages, subgroup 
ranges, moving ranges, and individual values themselves are all examples of statistics that 
can be plotted in time sequence and used as a basis for control charts. 

The basic layout of control charts is illustrated in Figure 5-7. The center line is usually the 
observed process average, although sometimes other measures of central tendency such 
as the median or mid-range are used. The control limits on either side of the center line are 
derived from one of several possible measures of process variability—ranges within 
subgroups being probably the most common.11 The traditional (Shewhart) control limits are 

10A statistic is a single-valued function of observable random variables, which is itself an observable 
random variable and which contains no unknown parameters [Mood 74]. 

11 Whatever the method for estimating control limits, you should always try to ensure that the 
estimates are based solely on the effects of common cause variation. Any special-cause variations 
that creep in will make the limits too wide. 
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Figure 5-7:  Control Chart Structure 

±3 sigma, where sigma is the (estimated) standard deviation of the statistic plotted on the 
chart.12 When a control limit lies beyond the range of possible outcomes, such as a negative 
value for product size, number of defects, or subgroup range, that control limit is usually 

omitted. 

Both Shewhart and Wheeler make strong cases for always using 3-sigma limits for control 
charts [Shewhart, 31, 39; Wheeler 92, 95]. Using 3-sigma limits avoids the need to make 
assumptions about the distribution of the underlying natural variation. Moreover, experience 
over many years of control charting has shown 3-sigma limits to be economical in the sense 
that they are adequately sensitive to unusual variations while leading to very few (costly) 
false alarms—regardless of the underlying distribution. 

Wheeler also shows how easy it is to estimate sigma incorrectly if you don't have a firm 
grasp on the concepts of rational sampling and rational subgrouping. For instance, people 
not well versed in control charting often use the standard deviation across all observed 
values as their estimate for sigma. This erroneous procedure lumps assignable cause 
variation together with common cause variation and almost always leads to control limits 
that are far too wide to be effective. Wheeler does an excellent job of illustrating these 
points. We urge you to read his books. 

Since the values you plot on control charts are statistics, they can be any function of the 
measured properties of a product or process that you wish (or have reason to expect) to be 
constant over time. These data can be obtained by measuring attributes such as team size, 

12On X-bar charts, sigma will be the standard deviation for individual values divided by Vn, where n 
is the number of observations in each subgroup. Thus, 

sigmax sigma- =   *    A . 
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elapsed time between milestones or events, staff hours expended per task, productivity, 
personnel turnover, tardiness, tool usage, backlog, number of defective units found, number 
of defects found per 1000 units, and so forth. 

In software environments, as in many other white-collar activities, measurements often 
occur only as individual values. You may not have opportunities to draw samples of size 
n > 1 in ways where the inherent variation within each sample can reasonably be assumed 
to be constant. As we shall see shortly, this often leads us away from X-bar and R charts 
and toward a preference for using individuals and moving range (XmR) charts for examining 
the time-sequenced behavior of process data. We will illustrate the procedures for 
constructing and interpreting XmR charts later in this chapter. 

Control charts have been used with success in industry since the 1920s, both in the United 
States and in other countries. As Montgomery points out, there are at least five reasons for 

their popularity [Montgomery 96]: 

1. Control charts are a proven technique for improving productivity. 
When used properly, control charts reduce scrap and rework—the primary 
killers in any operation. 

2. Control charts are effective in defect prevention. Control charts help 
keep the process in control, which is consistent with "do it right the first 
time" philosophies. When a process is not in control, you are not only 
paying someone to make a nonconforming product, but you must then rely 
on costly inspections to separate good product from bad to avoid 
dissatisfied customers. 

3. Control charts prevent unnecessary process adjustments. They do 
this by helping you distinguish between background noise and abnormal 
variation. No other device, including a human operator, is as effective in 
making this distinction. Without control charts, it is all too easy to overreact 
to background noise and overcontrol the process. Making unnecessary 
adjustments to a process always increases the variability in results. 

4. Control charts provide diagnostic information. Patterns found in control 
charts often contain diagnostic information that points to likely causes of 
abnormal behavior. This information greatly facilitates identifying and 
making the right changes. 

5. Control charts provide information about process capability. They 
provide information about both the values of important process parameters 
and their stability over time. This provides a rational basis for predicting 
future performance, which is of immense use to product and process 
designers. 
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The Distinction Between Variables Data and Attributes Data 
When measurements are used to guide process management and improvement, they are 
traditionally viewed as falling into one of two classes: variables data or attributes data. 
Control limits for attributes data are often computed in ways quite different from control limits 
for variables data. Unless you have a clear understanding of the distinctions between the 
two kinds of data, you can easily fall victim to inappropriate control charting methods. 

Variables data (sometimes called measurement data) are usually measurements of 
continuous phenomena. Familiar examples from physical environments include 
measurements of length, weight, height, volume, voltage, horsepower, torque, efficiency, 
speed, and viscosity. In software settings, elapsed time, effort expended, years of 
experience, memory utilization, cpu utilization, and cost of rework would be all considered 

examples of variables data. 

Attributes data, on the other hand, have a different origin and serve a different purpose. 
They occur when information is recorded only about whether an item conforms or fails to 
conform to a specified criterion or set of criteria. Attributes data almost always originate as 
counts—the number of defects found, the number of defective items found, the number of 
source statements of a given type, the number of lines of comments in a module of n lines, 
the number of people with certain skills or experience on a project or team, the percent of 
projects using formal code inspections, and so forth. 

Because attributes data arise from counts and continuous phenomena yield variables data, 
several authors (some of our favorites included) have fallen into the trap of equating 
variables data to continuous phenomena and attributes data to counts. Nothing could be 
further from the truth. There are many situations where counts get used as measures of size 
instead of frequency, and these counts should clearly be treated as variables data. 
Examples include counts of the total number of requirements, total lines of code, total 
bubbles in a data-flow diagram, McCabe complexities, customer sites, change requests 
received, backlogged items, and total people in an organization or assigned to a project. 
When we count things like these, we are counting all the entities in a population, not just the 
occurrences of entities with specific attributes. Counts of entities that represent the size of a 
total population should almost always be treated as variables data, even though they are 
instances of discrete counts. 

The key to classifying data as attributes data or variables data, then, depends not so much 
on whether the data are discrete or continuous as on how they are collected and used. For 
example, the total number of defects found, although a count based on attributes, is often 
used as a measure of the amount of rework and retesting to be performed. When used this 
way, most people would view a total count of defects as a measure of size and treat it as 
variables data, especially when it comes to choosing models for analysis and methods for 
computing control limits. Similarly, the number of working days in a month might properly be 
viewed as attributes data (if used as a numerator to compute the proportion of a month that 
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is available for working) or as variables data (if used as a denominator to normalize some 
other measure of activity or frequency of occurrence). 

In short, the method of analysis that you choose for any data you collect will depend on the 
questions you are asking, the probability model that you have in mind, and the assumptions 
that you are willing to make with respect to the nature of the data. We will illustrate these 
issues at several points in the discussions that follow. 

Two cautionary notes: as Wheeler and Chambers point out, one of the keys to making 
effective use of attributes data lies in preserving the ordering of each count in space and 
time. Sequence information (the order in time or space in which the data are collected) is 
often needed to correctly interpret counts of attributes. When people think of attributes data 
as simple tallies, they often fail to impose a useful structure on their data. This failure is a 
major cause of disappointing results in the use of attributes data [Wheeler 92]. 

Wheeler and Chambers also stress the importance making counts specific. This is not a 
major problem with continuous data, because the act of measuring usually makes the values 
specific enough. But with attributes data and other counts, the act of counting easily allows 
vagueness to creep in. There must be an operational definition (a clear set of rules and 
procedures) for recognizing an attribute or entity if what gets counted is to be what the user 
of the data expects the data to be. Checklists like the ones illustrated in Section 3.2 of this 
guidebook and in the SEI reports on defining software measures are examples of structured 
approaches that can be used to address this need [Park 92, Goethert 92, Florae 92]. 

Detecting Instabilities and Out-of-Control Situations 

The basic assumption underlying most statistical techniques is 
that the data are a random sample from a stable probability 
distribution, which is another way of saying that the process is 
in statistical control. It is the validity of this basic assumption 
which the control chart is designed to test. 

Mary G. Natrella, 1966 

...in developing a control criterion we should make the most 
efficient use of the order of occurrences as a clue to the 
presence of assignable causes. 

Walter A. Shewhart, 1931 

To test for instabilities in processes, we examine control charts for instances and patterns 
that signal nonrandom behavior. Values falling outside the control limits and unusual 
patterns within the running record suggest that assignable causes exist. 
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Several tests are available for detecting unusual patterns and nonrandom behavior. The 
Western Electric handbook cites four that are effective [Western Electric 58, Wheeler 92, 
95]: 

Test 1: A single point falls outside the 3-sigma control limits. 

Test 2: At least two of three successive values fall on the same side of, and 
more than two sigma units away from, the center line. 

Test 3: At least four out of five successive values fall on the same side of, and 
more than one sigma unit away from, the center line. 

Test 4: At least eight successive values fall on the same side of the center line. 

Tests 2, 3, and 4 are based on the presumptions that the distribution of the inherent, natural 
variation is symmetric about the mean, that the data are plotted in time sequence, and that 
successive observed values are statistically independent. The symmetry requirement means 
that the tests are designed primarily for use with X-bar and individuals charts. Strictly 
speaking, they are not applicable to R charts, S charts, or moving range charts. However, as 
the Western Electric handbook shows, you will not go far astray if you use tests 2, 3, and 4 
for R charts that are based on samples of size 4 or 5. For samples of size 2, however, the 
rules should be modified to account for the decidedly nonsymmetric nature of the range 
distribution. If you want to use these kinds of tests with small samples, you will find the 
modified rules described on page 182 of the Western Electric handbook [Western Electric 
58]. 

When you use the four tests, process instability is indicated whenever one or more of the 
conditions exist. The effect of using all four tests together, compared to using test 1 alone, is 
to reduce the average number of points between false alarms in a controlled process from 
370 to 91.25 [Champ 87].13 Thus the increased sensitivity that you get for detecting 
assignable causes comes at the cost of a four-fold increase in false alarms. 

As Wheeler points out, the four tests are a conservative and practical subset of the much 
larger body of tests that have been used from time to time in industrial settings [Wheeler 92, 
95]. Many other tests are also possible. Descriptions of some of these tests and 
assessments of their properties can be found in several references [Montgomery 96, Hoyer 
96, Western Electric 58, Champ 87]. Each additional test increases your chances of 
detecting an out-of-control condition. Unfortunately, it also increases your chances of getting 
a false alarm. In statistics, as in life, there is no free lunch. 

When using additional tests to supplement 3-sigma limits, it is important to understand that 
any decision to use a test should, in principle, be made before looking at the data. Waiting 

13The reference value of 370 was derived by assuming that the inherent variation is normally 
distributed. The number is different for other distributions. 
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until after you see the data to decide which patterns to treat as unusual has the effect of 
increasing the potential for false alarms, perhaps substantially. 

The temptation to violate this guideline is strong, as the human mind has a marvelous ability 
to perceive patterns after the fact. An "I'll know it when I see it" attitude can be very useful 
when interpreting patterns to deduce what may have caused an unusual event, but it falls 
easily into the trap of circular reasoning if used to single out a previously undefined pattern 
as a signal of an unusual event.14 Deming is quite explicit in pointing this out: 

Search for a pattern can be overdone. It is necessary to state 
in advance what the rules are for indication of a special 
[assignable] cause. One can always concoct a pattern that will 
indicate anything desired, once the chart is in hand. 

W. Edwards Deming, 1986 

Some organizations, though, have very good reasons for identifying specific patterns that 
are likely to signal something going wrong. For example, you may know that when an 
assignable cause of type X occurs, a pattern of type Y often follows. If few other causes 
produce patterns of type Y, and if it is possible for assignable causes of type X to creep into 
the process, it makes sense to be on the lookout for patterns of type Y and to use their 
appearance as a signal for action. It would be wise, however, to chart the effectiveness of 
your detection rule in order to determine the frequency with which it leads to false alarms. 
Your guidelines for using the rule can then be tailored accordingly. 

The Stability Investigation Process 

Statistical control [is] not mere application of statistics... 
Classical statistics start with the assumption that a statistical 
universe exists, whereas control theory starts with the 
assumption that a statistical universe does not exist. 

Walter A. Shewhart, 1943 

Figure 5-8 shows the steps involved in investigating the stability of a process. It provides a 
context for discussing the use of product or process measurements to evaluate process 
stability. 

14Excellent discussions and illustrations of patterns and what they may tell you can be found in 
Montgomery's text and in the Western Electric Handbook [Montgomery 96, Western Electric 58]. 
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o 
Select the process 

© Identify the product or process 
characteristics that describe 
process performance 

© 

© 

© 

I 
Select the appropriate 
control charts 

I 
Measure process performance 
over a period of time 

T 
Use appropriate calculations 
based on measurement data 
to determine the center lines 
and control limits for the 
performance characteristics 

Figure 5-8: The Steps for Using Control Charts to Evaluate Process Stability 

The steps in Figure 5-8 are as follows: 

1. Select the process to be evaluated for stability. 

2. Identify the product or process characteristics that describe process 
performance. 

3. Select the appropriate types of control chart. 

4. Measure product and/or process characteristics over a period of time. The 
number of measurements and the period will be a function of the process 
and will depend on the type of control chart used. 
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5. Use appropriate calculations, applied to the measurement data, to 
establish the center lines and limits of variation for normal process 
performance. The specific calculations will vary depending on the type of 
control chart used. 

6. Plot the measurement data obtained from Step 4 on the control charts. 

7. Compare the values plotted in Step 6 to the center-line values and limits 
established in Step 5. 

8. If all plotted values are distributed randomly above and below the center 
lines and within the control limits, conclude that the process has been 
stable at least for the period or events covered by the measurements. 
Continue measuring and plotting the data to ensure that the process 
remains stable. 

9. If any plotted value exceeds the limits, or if the pattern of values exhibits 
other nonrandom behavior, conclude that the process is not stable. The 
reasons for such observations must be investigated. If an assignable 
cause is found and the result is detrimental, fix the process so that it 
cannot happen again. If the result is beneficial, try to make the cause part 
of the process. 

10. Once all assignable causes have been removed, the control limits should 
be recalculated. This may mean that you will need additional observations 
to determine reliable limits for the process as corrected. 

If, by following the above steps, you find that the process appears to be in control, and if you 
have grounds for believing that the process will continue to operate in the future as it has in 
the past, the limits found in Step 5 may be used to predict future process behavior. 

On the other hand, if you find that the process is not stable, the limits derived in Step 5 are 
not valid for predicting process behavior; they merely pass judgment on the past 
performance of the process. Once the assignable causes have been corrected, the 
procedure for determining limits must start again at Step 4. 

Even when out-of-control data are included in the values used to compute the control limits 
at Step 5, effective (rational) subgrouping will ensure that the limits are almost always 
sufficiently tight to identify lack of control. Using all the data as one large group to compute 
an estimate for sigma is almost always wrong, because it presumes that the process is in 
control (i.e., that a single, stable distribution exists). Limits computed from the full data set 
can easily be much too wide because they are contaminated by assignable cause 
variations. The purpose of rational subgrouping is to minimize the effects of assignable 
cause contamination. Wheeler illustrates these points effectively in his books [Wheeler 92, 
95]. We will discuss rational subgrouping in more detail in Section 7.6. 

The use of stability criteria to assess the predictability of process performance places this 
topic squarely in the setting of an analytic study. All the cautions and caveats that will be 
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discussed in Section 7.1 apply. Nevertheless, demonstrating that a process has historically 
behaved in a controlled and stable way provides the most reasonable basis possible for 
extrapolating to the future. Just think of the alternative: if you knew that your process was 
unstable, how much faith would you place in your ability to predict its future performance? 
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5.3     Control Charts for Variables Data 

The control chart is the process talking to us. 

Irving Burr, 1953 

To see how control charts can be used to investigate process stability, we will look at four 

different kinds of charts: 

• X-bar and range charts 

• individuals and moving range charts (often called XmR charts) 

• u charts 

• Z charts 

The first two kinds of charts are illustrated in this section. The third and fourth charts (and 
XmR charts, again) will be illustrated when we address control charts for attributes data in 

Section 5.5. 

X-Bar and Range Charts 
Charts for averages, often called X-bar charts, are used with subgrouped data. They apply 
when measurements for subgroups of size n > 2 can be obtained under conditions where 
the variation can reasonably be expected to be unchanging within each subgroup. Although 
these conditions seem to occur less frequently in software settings than in industrial 
manufacturing, you should be familiar with the capabilities of charts that can take advantage 
of this kind of subgrouping. X-bar and range charts can be very useful when sampling 
opportunities are plentiful and assumptions of homogeneous variation can be supported. 

X-bar charts are used to answer the question, "Has the central tendency of the process 
changed over the time period observed?" The corresponding range charts (often called R 
charts) address the question, "Has the dispersion in the observed values been affected by 
assignable causes?" Charts for averages and ranges are used together to identify points 
where a process has gone out of control. Measurements of product or process 
characteristics are grouped into self-consistent sets (subgroups), and the results of the 
groupings are used to calculate the limits used to examine stability and control the process. 

The procedure for calculating control limits for X-bar and R charts is shown in Figure 5-9 
[Wheeler 92]. The terms A^, D3, and D4 are conventional symbols for factors that have 

been tabulated by statisticians for converting averages of subgroup ranges into unbiased 
estimates for 3-sigma limits. An abbreviated table of these factors is shown in Figure 5-10. 
More extensive tables can be found in almost any book on statistical process control 
[Duncan 74, Wadsworth 86, Ott 90, Wheeler 92, Wheeler 95, Grant 96, Montgomery 96]. 
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1. Compute the average and range for each of the k subgroups. 

2. Compute the grand average, X, by averaging each of the k subgroup 
averages. 

3. Compute the average range, R, by averaging each of the k subgroup 
ranges. 

4. The center line for the X chart is X. The center line for the R chart is R. 

5. Find the values for A,, D3, and D4 which correspond to the subgroup size 
n. (See the table in Figure 5-10.) 

6. Multiply R by A^, giving Ar,R. 

7. Add A2R to the grand average to obtain the upper control limit for the X 

chart. {UCL^=X + A2R} 

8. Subtract A,ft from the grand average to obtain the lower control limit for 

the X chart. {LCL^ =X- A.R} 

9. Multiply R  by   D4 to get the upper control limit for the R chart. 

{UCLR=D4R} 

10. Multiply R by D3 to get the lower control limit for the R chart. {LCLR =D3R} 

Figure 5-9:  Procedure for Calculating Control Limits for X-Bar and R Charts 

One caution: the procedure in Figure 
5-9 uses the observed ranges within 
subgroups as the basis for estimating 
the standard deviation of the natural 
process variation. The efficiency of 
this method falls off rapidly as the size 
of the subgroups increases. For this 
reason, most experts advise that 
range charts be used only when there 
are less than 10 observations in each 
subgroup. For subgroups of size 4, 5, 
and 6, the procedure in Figure 5-9 
works very well. For larger subgroups, 
S charts based on averages of 
quadratic estimators for the standard 
deviation within subgroups give more 
reliable results. S charts are also 

n 
*2 D3 D< 

2 1.880 — 3.268 

3 1.023 — 2.574 

4 0.729 — 2.282 

5 0.577 — 2.114 

6 0.483 — 2.004 
7 0.419 0.076 1.924 

8 0.373 0.136 1.864 

9 0.337 0.184 1.816 
10 0.308 0.223 1.777 

Figure 5-10: Constants for Computing Control 
Limits for X-Bar and R Charts 
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preferred when the subgroup size is not constant. In these cases, computing an average 
range is meaningless, since the expected value for the range within each subgroup varies 
with subgroup size. 

The steps for using S charts parallel those in Figure 5-9. However, the factors A,, D3, and 
D4 get replaced with alternative factors that are consistent with the use of quadratic 

estimators for sigma. There are two ways to compute S, and hence two sets of factors. 
These factors and the steps for constructing S charts are discussed in many books that 
provide instruction on control charting. Montgomery, for example, provides excellent 
illustrations [Montgomery 96]. For economic reasons, it is usually wise to avoid subgroups 
that are larger than 5 or 6 even when using S charts. So, unless you enjoy calculating root 
sum squares, and as long as your subgroup sizes are constant, R charts will serve you well. 

Example 

John Smith, a software manager at Homogeonics, Inc. is responsible for developing the 
follow-on release to an existing product. He is also responsible for providing support service 
to users of the existing product. The development schedule for the new product has been 
based on the assumption that product support service will require about 40 staff hours per 
day until the new product is released. Because of the intermittent behavior and potential 
complexity of service requests, everyone on the development team must be available to 
provide support service at any given time. Mr. Smith is concerned that the daily effort to 
support service requests stays within the range assumed by the plan, for if the effort 
exceeds the plan for a sustained period, the development schedule will be in jeopardy, and 
alternative plans will be needed. 

The record for product-support staff hours expended per day by the technical staff for the 
past 16 weeks is shown in Figure 5-11. 

Week Mon Tues Wed Thur Fri Averaae Ranqe 
1 50.5 43.5 45.5 39.8 42.9 44.44 10.7 
2 44.3 44.9 42.9 39.8 39.3 42.24 5.6 
3 48.8 51.0 44.3 43.0 51.3 47.68 8.3 
4 46.3 45.2 48.1 45.7 44.1 45.88 4.0 
5 40.6 45.7 51.9 47.3 46.4 46.38 11.3 
6 44.4 49.0 47.9 45.5 44.8 46.32 4.6 
7 46.0 41.1 44.1 41.8 47.9 44.18 6.8 
8 44.9 43.4 49.0 49.5 47.4 46.84 6.1 
9 50.0 49.0 42.6 41.7 38.5 44.36 11.5 
10 44.5 46.5 41.7 42.6 41.7 43.40 4.8 
11 43.8 41.8 45.5 44.5 38.6 42.84 6.9 
12 37.2 43.8 44.8 43.5 40.9 42.04 7.6 
13 50.0 43.4 48.3 46.4 43.4 46.30 6.6 
14 52.3 45.2 42.2 44.8 42.8 45.46 10.1 
15 50.0 46.2 47.4 42.2 47.0 46.56 7.8 
16 47.3 49.7 48.0 42.0 41.0 45.60 8.7 

Grand Averaaes 45.03 7.59 

Figure 5-11: Hours of Product-Support Effort for a 16-Week Period 
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To examine the variability in the data, Mr. Smith grouped the values by week, computed the 
average daily hours for each week (each week is a subgroup), and used the results to com- 
pute control limits for the weekly averages and ranges. He then plotted the weekly averages, 
ranges, and limits on control charts to see if there were any signs of unstable conditions. 
The computations he used were as follows, and the results are shown in Figure 5-12. 

The grand average is   X = 45.03 staff hours. 

The average range is   R = 7.59 staff hours. 

The subgroup size is   n   =5. 

From the table in Figure 5-10: Ar, = 0.577, D3 = 0, and D4 = 2.114 

From the formulas in Figure 5-9: 

UCLx = X + A2R = 45.03 + 0.577(7.59) = 49.41 

CLx = X = 45.03 

LCZ.^ =X-A,fl =45.03-0.577(7.59) = 40.66 

UCLR=DAR       =2.114(7.59) = 16.04 

CLR = R = 7.59 

LCLR = D3R       = undefined (does not exist for n = 5) 

Average and Range Charts 
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Figure 5-12: X-Bar and R Charts for Daily Product-Service Effort 
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The weekly averages and ranges plotted in Figure 5-12 are well within the control limits, 
thus meeting the primary requirement for statistical control (Shewhart's Criterion I). To test 
for other signs of instability, the manager also looked for patterns of runs in the data, as 
discussed in Section 5.2. The additional tests he used were 

Test 2: At least two of three successive values fall on the same side of, and 
more than two sigma units away from, the center line. 

Test 3: At least four out of five successive values fall on the same side of, and 
more than one sigma unit away from, the center line. 

Test 4: At least eight successive values fall on the same side of the center line. 

To perform these tests, he needed an estimate for sigma^, the standard deviation of a 

subgroup average. This estimate is given by 

sigma^ 
_A,R 

which, for the example, gives 

0.577(7.59)    ^ AO       .   4        .    . Sigmar = ^ - = 1.46 product - service hours. 

Mr. Smith used this information to plot lines at 1-sigma intervals on the chart for average 
daily product-service hours. Figure 5-13 shows the result. With the added guidelines, he 
could see that none of the patterns described in tests 2-4 were present. He concluded, 
therefore, that the staff-hour expenditures for product service are consistent with a stable 
process, and that the average daily value is approximately five hours per day above the 
planned value. Since no instances of assignable cause variation are apparent, he knows he 
will need to change the product-service process (or the quality of the product) if he wants to 
reduce the variation or center it about his planning target. 
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Figure 5-13: Testing for Patterns in Weekly Product-Service Data 
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Individuals and Moving Range Charts for Continuous Data 
When measurements are spaced widely in time or when each measurement is used by itself 
to evaluate or control a process, a time-sequenced plot of individual values rather than aver- 
ages may be all that is possible. The subgroup size n is then 1, and the formulas based on 
subgroup ranges that are used for plotting limits for X-bar and R charts no longer apply, so 
another way is needed to calculate control limits. Here the principle of rational subgrouping 
comes into play, and we use the short-term variation between adjacent observed values to 
estimate the natural (inherent) variation of the process. This leads to a pair of charts, one for 
the individual values and another for the successive two-point moving ranges. This 
combination of charts for individual observations and moving ranges is called an XmR chart, 
where X and mR symbolize the individual values and moving range, respectively.15 

The idea behind XmR charts is that, when subgroups can easily include nonrandom 
components, we minimize the influence that nonrandom effects have upon estimates for 
sigma by keeping the subgroups as small as possible. The smallest possible subgroup size 
is 1. There is no way to estimate sigma from a single measurement, so we do the next best 
thing—we attribute the changes that occur between successive values to the inherent 
variability in the process. The absolute values of these changes are called two-point moving 

ranges. 

When m sequential measurements are available, we will have m -1 moving ranges. If one 
of these moving ranges is contaminated with an assignable cause, we will still have m-2 
moving ranges that are representative of the inherent variation. Thus XmR charts are 
essentially a strategy for isolating assignable causes. When we average the moving ranges 
to derive an estimate for sigma, some error may be present, but 1 large range out of 20 or 
so will not have an unacceptably large effect on the results. 

Factors exist that enable us to calculate 3-sigma limits for both individual values and the 
moving ranges. The following formulas apply: 

The /rth (two-point) moving range mRk = |Xk+1 - Xk\ 

  j     m-1 

Average moving range mR = -^mRk 

where m is the total number of data points. 

15The Western Electric handbook gives these examples for the principal kinds of data for which XmR 
charts are applicable [Western Electric 58]: 

- accounting figures of all kinds, including shipments, efficiencies, absences, losses, inspection 
ratios, maintenance costs, accident reports, records of tests, etc. 

- production data such as temperatures, pressures, voltages, humidity, conductivity, furnace 
heat, gas consumption, the results of chemical analysis, etc. 
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—     1 
Center line (the average of individual values)   CLX = X = -Yxj( 

m ~ 

Upper natural process limit 

Lower natural process limit 

UNPLX = X + 2.660 mR 

LNPLv=X-2.660mR 

Center line or average moving range 

Upper control limit for moving range 

Lower control limit for moving ranges 

CLR = mR 

UCLR =D4mR = 3.268 mR 

LCLp does not exist for n = 2 

The 3-sigma distance associated with individual values above is given by the formula 

„  . 3mR    _ ___—— 
3 sigma x = —— = 2.660 mR 

So we can estimate sigmax as follows: 

m~R 
sigmax =  

d2 

The subgroup size for two-point ranges is n = 2, 
so the value for D4 obtained from. Figure 5-10 is 
D4 = 3.268. The value for d2 is obtained similarly 

from a table of dispersion adjustment factors that 
converts average ranges to estimates for 
sigma.16-17 An abbreviated form of this table, 
shown in Figure 5-14, shows that d2 = 1.128. 

subgroup 
size n 

d2 

2 1.128 

3 1.693 
4 2.059 

5 2.326 

6 2.534 

7 2.704 

8 2.847 

9 2.970 
10 3.078 

Figure  5-14: Dispersion Adjustment 
Factors for Range Data 

16The values for d2 have been computed by Harter [Harter 60]. They can be found tabulated for a 
wider range of n values in most references that provide instruction in control charting methods. 

17Strictly speaking, the values tabulated for d2 assume that the ranges have been averaged for a 
fairly large number of subgroups, say 20 or more. When only a few subgroups are available, the 
values for d2 are somewhat too small, and limits computed by applying d2 to the average range will 
be too wide. If this is of concern to you, you may wish to consult the table of corrected values d2 

tabulated by A. J. Duncan. This table appears on page 950 of his book and on page 417 of Wheeler's 
1995 work [Duncan 74, Wheeler 95]. In most applications of control charts, however, it suffices to use 
estimates for sigma that are based on d2. 
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Although the impracticality of grouping may be one reason for charting individual values, 
there are other reasons that can motivate you to plot individual values voluntarily. For 
example, the Western Electric handbook lists five types of conditions that may be detected 
more readily with individuals charts than with X-bar and R charts [Western Electric 58]: 

1. cycles (regular repetitions of patterns) 

2. trends (continuous movement up or down) 

3. mixtures (presence of more than one distribution) 

4. grouping or bunching (measurements clustering in spots) 

5. relations between the general pattern of grouping and a specification 

XmR charts can also occur as a natural evolution of simple run charts, once sufficient points 
become available to compute reasonably reliable control limits. 

Care should always be exercised when interpreting patterns on a moving range chart. 
Moving ranges are correlated, and this correlation can induce patterns of runs or cycles. For 
this reason, some authorities recommend not plotting the moving range chart at all [Roes 
93, Rigdon 94]. They point out also that the moving range cannot really provide any useful 
information about a shift in process variability that is not apparent in an individuals chart 
alone. However, as long as little weight is given to patterns like runs and cycles in a moving 
range chart, little harm will come from constructing the plot, and it may help people who are 
accustomed to X-bar and R charts feel comfortable with your results. Once a process is in 
control, though, the false alarm rate when using two charts together is likely to be roughly 
three times as large as when using an individuals chart alone [Rigdon 94]. 

Example 
Mr. Smith, the software manager at Homogeonics, Inc., is interested in evaluating the day- 
to-day variation of effort spent on servicing the existing product. He suspects that different 
factors may influence activity levels on different days of the week and that there may be 
differences from week to week. Because day-to-day variation lies at the heart of his 
question, grouping the data would not be rational. XmR charts that plot the data in the order 
in which they are obtained then become the appropriate charts to use. 

The 80 data points in Figure 5-11 provide a sequence that we can use to construct the 
individuals and moving range charts. From the data, we find the average staff hours per day 
(X) and the average two-point moving range (mR) to be 

X = 45.03 and mR = 3.38 

The computations then proceed as follows: 

Center line (average of individual values)       CLX = X = 45.03 
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Upper natural process limit 

Lower natural process limit 

Center line or average moving range 

Upper control limit for moving range 

UNPL = X + 2.660 mR = 54.01 

LNPU = X - 2.660 mfl = 36.05 

CLR = mR = 3.38 

UCLR   = D4mR 
= 3.268mA = 11.03 

Sigma for individual values 
mR     3.38    ___. 

sigmax = —— = —rrr = 2.996 y     x     d2     1.128 

The results of these calculations are plotted with the data on the control charts in Figure 5- 
15. There are no out-of-limit points and no patterns that suggest unusual behavior. The 
process appears to be in statistical control from the perspective of individual values, just as it 
did when weekly averages were plotted on X-bar and R charts.18 

Since nothing unusual is apparent in Figure 5-15, we can use the data to illustrate the 
concept of natural process limits. That discussion takes place shortly, in Section 5.4. 

Individuals (X) and Moving Range Charts 

=3 o 

3= re 
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> o 

UCL = 54.01 

CL = 45.03 

LCL = 36.05 

UCL = 11.03 

CL = 3.38 

Day Number 

Figure 5-15: XmR Charts for Daily Customer-Service Effort 

18The fact that group averages were in control was no guarantee that the individual values would be 
in control. 
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individuals and Moving Range Charts for Discrete Data 
Variables data are not always measured on continuous scales. Sometimes they take on only 
discrete values, such as when counts of objects are used to describe the size of an entity or 
the status of an activity. If the discrete measurements range over at least five distinct values, 
the data can usually be treated as if they were continuous. The usual X-bar, R, and XmR 
charts then apply. The following example illustrates this point. 

Example 
Each week a system test organization reports the number of critical problems that remain 
unresolved. The number of unresolved problems (URPs) are compared to the planned 
number, the average number unresolved since testing began, and the average number of 
unresolved problems in the previous weeks of the current quarter. At the conclusion of week 
31, the weekly report contains the data shown in Figure 5-16. 

Number of 
unresolved 
problems 
(URPs) 

Planned 
#of 

URPs 

System Test Report for Week 31 

Deviation      Average Deviation 
from URPs prior from grand 

planned to current average 
value           week 

Average 
URPs this 

quarter 

Deviation 
from 

quarter 
average 

28 19 + 47.4% 20.13 +39.07% 20.50 +36.6% 

Figure 5-16: Report of Unresolved Problems 

The system test manager is concerned that something may have happened to the problem 
resolution process in week 31, and that the schedule for completing testing may now be 
threatened by something that is causing a surge in the backlog of unresolved problems. 
However, he is not totally convinced that the most recent value (28) is a signal that 
something is amiss. To help determine whether or not the current week's value may be 
simply the result of normal random variation, the history of unresolved problem reports for 
the current year has been obtained and tabulated. This history is shown in Figure 5-17. 

History of In-Process Inventory of Unresolved Problem Reports 

Week 1        23456789        10      11 12 

IstQtr 19      27      20      16      18      25      22      24      17      25      15 17 

2nd Qtr 20     22      19      16     22      19     25     22      18     20      16 17 

3rd Qtr 20     15     27     25     17     19     28 

Figure 5-17: Weekly History of Unresolved Problem Reports 

This tabulation shows that on two previous occasions the number of unresolved problems 
approached the value of 28 in the latest week. But this doesn't fully resolve the issue for the 
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system test manager. Because the problem resolution process had seemed to be stable 
over the first two quarters, he decided to construct a control chart to see if it might point to 
any problems with the process. Since only one data point was obtained each week, and 
since week-to-week variation is the issue that concerns him, the most rational subgrouping 
for examining the inherent variability in the backlog data is the two-point moving range. XmR 
charts are then the appropriate tools for examining the issue. 

The approach the test manager elected to take was to use the data from the first 2 quarters 
(24 weeks) to create the control chart. He then extended the chart by plotting the current 
quarter's data and holding the control limits constant. His computations, based on data from 
the first 24 weeks of testing, are shown below. As with XmR charts for continuous data, the 
average of the moving ranges were used to estimate the standard deviation of the inherent 
variation. The factors D4 and d2 that correspond to n = 2 (the subgroup size for two-point 
moving ranges) were obtained from the tables in Figures 5-10 and 5-14. These factors are 
3.268 and 1.128, respectively. 

X = 20.04 for the first 24 weeks 

mR = 4.35 

Center line (average of individual values)       CLX = X = 20.04 

Upper natural process limit UNPLX = X +  
_     d2     

= X + 2.660mfl = 31.6 

Lower natural process limit LNPLX = X-2.660mfl = 8.49 

Center line (average moving range) CLR = mR = 4.35 

Upper control limit for moving range UCLR = D4mR = 3.268mR = 14.2 

The completed XmR charts for the backlog of critical problem reports, with the points for the 
third quarter added, are shown in Figure 5-18. These charts show no sign that anything 
unusual has happened (using all four tests for instability described earlier). Thus, the 
process appears to be stable, and the occurrence of 28 unresolved problems in week 31 is 
not a significant signal that the process has changed. Occasional random backlogs of size 
28 (or even more) fall within the limits of natural variability that represent the voice of the 
process. The manager concluded that it would be unwise to take precipitous action to rectify 
the backlog reported in week 31. 

Since the charts in Figure 5-18 show no signs of instability, the control limits reflect what the 
process is likely to do, as long as it continues to operate consistently and its inputs remain 
as consistent as they have in the past. If the manager wants to reduce either the average 
backlog or the amount of variation, the process itself will have to be changed. 
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Figure 5-18: XmR Charts for Unresolved Problem Inventory 

5.4     Frequency Histograms and Natural Process Limits 

Constant systems of chance causes give rise to frequency 
distributions, often called statistical laws. 

Walter A. Shewhart, 1931 

The results of measurements are often used to construct histograms that summarize the 
historical performance of a process. Figure 5-19 is an example. Here the data from 
Homogeonics, Inc. have been grouped to obtain the frequency counts depicted by the 
vertical bars. The center line and control limits from the XmR charts have been added to the 
histogram to help characterize the data. 

One caution: empirical distributions of the sort shown in 
process that produced the data is not in statistical 
sequences of measurements invariably get interpreted 
But it is impossible to say what a histogram of an out 
means that a control chart for individual observations 
presenting a histogram of process results to anyone, 
been drawn, even by veteran statisticians, because 
constant system of chance causes was not tested. 

Figure 5-16 can be misleading if the 
control. Histograms obtained from 
as predictive of future performance, 
-of-control process represents. This 
should always be examined before 
Many erroneous conclusions have 
the fundamental assumption of a 
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Figure 5-19: A Histogram of Measurements from a Stable Process 

In the Homogeonics example, our investigations showed no signs of out-of-control behavior, 
so we may be justified in interpreting the data as having come from a single, constant 
system of chance causes.19 Fluctuating or shifting distributions and mixtures of distributions, 
had they been present in significant size, could easily have produced unusual values or 
patterns. No histogram or control chart would then have predictive merit. It is only when 
control charts suggest that a process is stable, and we can assure that nothing related to the 
process will change, that we have a reasonable basis for using histograms like Figure 5-19 
to characterize expectations of future performance. 

When you have a stable process, the limits associated with a control chart or histogram for 
individual values describe what the process is able to do, as long as it continues to operate 
as it has in the past. These limits are called natural process limits because they represent 
the degree of variation inherent in the process once all assignable causes have been 
removed and prevented from recurring. 

Natural process limits always describe the variability associated with individual 
measurements, not the variability of the subgroup averages used to construct X-bar charts. 

19We say "may be" because it would help to know something about the characteristics and 
frequencies of incoming requests and the repeatability of the process that assigns people to service 
the requests. 
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5.5     Control Charts for Attributes Data 
Thus far our discussions on using control charts to analyze process stability have focused 
on variables data. These data usually consist of observations of continuous phenomena or 
of counts that describe size or status. Counts related to occurrences of events or sets of 
characteristics, on the other hand, are traditionally referred to as attributes data. Examples 
include the number of defects in a module or test, the percentage of people with specified 
characteristics, the number of priority-1 customer complaints, and the percentage of 
nonconforming products in the output of an activity or process. 

When attributes data are used for direct comparisons, they must be based on consistent 
"areas of opportunity" if the comparisons are to be meaningful. For example, if the number of 
defects that are likely to be observed depends on the size of a module or component, all 
sizes must be nearly equal. The same holds true for elapsed times if the probabilities 
associated with defect discovery depend on the time spent inspecting or testing. 

In general, when the areas of opportunity for observing a specific event are not equal or 
nearly so, the chances for observing the event will differ across the observations. When this 
happens, the number of occurrences must be normalized (i.e., converted to rates) by 
dividing each count by its area of opportunity before valid comparisons can be made. 

Although constant areas of opportunity occur fairly often in manufacturing situations, where 
product sizes and complexities are often relatively consistent from item to item, conditions 
that make us willing to assume constant areas of opportunity seem to be less common in 
software environments. This means that normalization will almost always be needed when 
using attributes data to evaluate software products and processes. 

When areas of opportunity can change from observation to observation, measuring and 
recording the size of each area is something that must be addressed when you define 
procedures for counting the occurrences of events that interest you. For example, if defects 
are being counted and the size of the item inspected influences the number of defects 
found, some measure of item size will also be needed to convert defect counts to relative 
rates that can be compared in meaningful ways. Similarly, if variations in the amount of time 
spent inspecting or testing can influence the number of defects found, these times should be 
clearly defined and measured as well. If both size and inspection time can influence the 
number of defects found, models more elaborate than simple division will be needed to 
normalize defect counts so that they can be plotted meaningfully on control charts. 

Distributional Models and Their Relationships to Chart Types 
To set the stage for the discussions that follow, it helps to have an understanding of the 
different kinds of control charts that are used with attributes data. Figure 5-20 lists the most 
frequently used chart types [Wheeler 92]. Each type of chart is related to a set of 
assumptions (i.e., a distributional model) that must hold for that type of chart to be valid. 
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There are six types of charts for attributes data—np, p, c, and u charts, as well as XmR 

charts for counts and XmR charts for rates. 

Data characterized by a 
binomial model 

Data characterized by a 
Poisson model 

Other data based on 
counts 

Area of 0 

n constant 

pportunity 

n variable 

Area of Opportunity 

constant       variable 

Area of Opportunity 

constant       variable 

np chart 
or XmR 

p chart 
or XmR 

c chart 
or XmR 

u chart 
or XmR 

XmR 
charts for 

counts 

XmR 
charts for 

rates 

Figure 5-20: Table of Control Charts for Attributes Data 

XmR charts have an advantage over np, p, c, and u charts in that they require fewer and 
less stringent assumptions. They are also easier to plot and use. This gives XmR charts 
wide applicability, and many quality control professionals recommend their use almost 
exclusively over np, p, c, and u charts. Nevertheless, when the assumptions of the 
underlying statistical model are met, the more specialized np, p, c, and u charts can give 
better bounds for control limits. Hence, in the right situations, they offer definite advantages. 

The control charts in Figure 5-20 are categorized according to the underlying distributional 
model they rely on and the nature of the area of opportunity as follows: 

• An np chart is used when the count data are binomially distributed and all 
samples have equal areas of opportunity. These conditions can occur in 
manufacturing settings, for example, when there is 100% inspection of lots 
of size n (n constant), and the number of defective units in each lot is 
recorded. 

• A p chart is used in lieu of an np chart when the data are binomially 
distributed but the areas of opportunity vary from sample to sample. A p 
chart could be appropriate in the inspection example above if the lot size n 
were to change from lot to lot. 

In software settings, for instance, it might be possible to use p charts to 
study coding practices, where the use of a practice is characterized by the 
percent of code in a module that contains a given construct (a comment, 
"uses" clause, or "with" clause, for instance). To do this, though, we should 
first ascertain that the conditions for a binomial model are satisfied, namely 
that the event counted is matched to individual lines of code in a way such 
that each line can be treated as an independently drawn sample from a 
population with a constant probability of event occurrence from line to line— 
like tossing an unbalanced coin. Thus the inclusion of headers in comment 
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counts would likely invalidate the use of a binomial model, since headers 
tend to cluster at the start of modules. This illustrates the kind of care and 
caution that are needed when using the traditional charts for attributes data. 

•Ac chart is used when the count data are samples from a Poisson 
distribution, and the samples all have the same sized areas of opportunity. 
Under the right situations, c charts can be appropriate charts to use when 
tracking the number of defects found in lengths, areas, or volumes of fixed 
(constant) size. As when using a binomial distribution, the justification for 
assuming a Poisson process should always be examined carefully, and the 
validity of the assumptions should be verified by empirical evidence 
wherever possible. 

• A u chart is used in place of a c chart when the count data are samples 
from a Poisson distribution, and the areas of opportunity are not constant. 
Here the counts are divided by the respective areas of opportunity to 
convert them to rates. Defects per thousand lines of code or defects per 
function point are possible examples. 

• An XmR chart can be used in any of the situations above. It can also be 
used when neither a Poisson nor a binomial model fits the underlying 
phenomena. Thus, XmR charts are especially useful when little is known 
about the underlying distribution or when the justification for assuming a 
binomial or Poisson process is questionable. 

The first four charts (np, p, c, and u charts) are the traditional control charts used with 
attributes data. Each assumes that variation (as measured by sigma) is a function of the 
mean of the underlying distribution. This suggests that caution is in order. Whenever a 
binomial or Poisson model is truly appropriate, the opportunities for process improvement 
will be somewhat constrained. The linking between sigma and the mean says that you 
cannot reduce variability without changing the center line, nor can you move the center line 
without affecting the variability. If these constraints on process improvement do not make 
sense, you should not use the traditional charts. 

Because attributes data are individual values, XmR charts are almost always a reasonable 
choice. The exception occurs when the events are so rare that the counts are small and 
values of zero are common. Then the discreteness of the counts can affect the reliability of 
the control limits in XmR charts. Still, whenever the average of the counts exceeds 1.00, 
XmR charts offer a feasible alternative to the traditional control charts described above. And 
when the average count exceeds 2.00, the discreteness of the counts will have only 
negligible affects on the effectiveness of the control limits [Wheeler 95]. 

U Charts 

Of the control charts that rely on distributional models, the u chart seems to have the 
greatest prospects for use in software settings. A u chart is more flexible than a c chart 
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because the normalizations (conversions to rates) that it employs enable it to be used when 
the areas of opportunity are not constant. 

U charts and c charts both assume that the events that are counted follow a Poisson 
process. One situation where a Poisson model might be appropriate occurs when counting 
the numbers of defects found in modules during inspection or testing. If the areas of 
opportunity for observing defects are the same across all modules or tested components, c 
charts may be appropriate charts to use. However, if the areas of opportunity are not 
constant (they rarely are), then the raw counts must be converted to rates by dividing each 
count by the size of its area of opportunity. 

When areas of opportunity are appropriately measured and a Poisson model applies, u 
charts are the tool of choice. Defects per thousand lines of source code, defects per function 
point, and system failures per day in steady-state operation are all examples of attributes 
data that are candidates for u charts.20 Defects per module and defects per test, on the 
other hand, are unlikely candidates for u charts, c charts, or any other charts for that matter. 
These ratios are not based on equal areas of opportunity, and there is no reason to expect 
them to be constant across all modules or tests when the process is in statistical control. 

By virtue of their dependence on Poisson distributions, both u charts and c charts must 
satisfy the following conditions [Wheeler 92]: 

• They must be based on counts of discrete events. 

• The discrete events must occur within some well-defined, finite region of 
space, time, or product. 

• The events must occur independently of each other. 

• The events must be rare, relative to the opportunity for their occurrence. 

We suggest adding two more tests to Wheeler's list: 

• The measure used to describe the size of the area of opportunity should be 
such that the expected (average) number of events observed will be 
proportional to the area of opportunity. 

• No other factor that varies from one examined entity to another materially 
affects the number of events observed. 

20Although u charts may be appropriate for studying software defect densities, we are not aware of 
any empirical studies that have validated the use of Poisson models for these situations. We can 
conceive of situations, such as variations in the complexity of internal logic or in the ratios of 
executable to nonexecutable statements, where simply dividing by module size provides inadequate 
normalization to account for unequal areas of opportunity. For example, if modules are deliberately 
made small when the tasks that they perform are inherently difficult to design and program, then 
simple defect densities are unlikely to follow the same Poisson process across all modules. 

100 CMU/SEI-97-HB-003 



One way to test whether or not a Poisson model might be appropriate is this: If you can 
count the nonconformities but it is impossible to count the conformities, you may have a 
Poisson situation. (The conditions that were just listed must apply as well.) 

When the opportunities for observing the event are not constant, as when differently sized 
portions of code are examined or tested for defects, the counts must be converted into 
rates—such as defects per thousand lines of code or defects per thousand source 
statements—before they can be compared. The rates are computed by dividing each count 
(c,) by its area of opportunity (a,). The rate that results is denoted by the symbol u,. Thus, 

Once values for u, have been calculated, they can be plotted as a running record on a chart, 

as shown in Figure 5-21. 
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Figure 5-21: Time-Sequenced Plot of Code Inspection Results 

The center line and control limits for u charts are obtained by finding u, the average rate 
over all the areas of opportunity, and using these formulas: 

- 2> 

CL, = u 

UCLu = u + 3_ LCL=u-3\— 
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The presence of the area of opportunity a, in the formulas for the control limits for u charts 
means that the limits will be different for each different area of opportunity. This can be 
disconcerting when the results are presented to people who are not familiar with these kinds 
of charts or the implications of a Poisson distribution. 

The following example illustrates the use of u charts to investigate the stability of a code 
inspection process. 

Example 
Figure 5-22 shows a sequence of data obtained 
from inspecting 26 software modules. The data 
include the module identifier (i.e., its position in 
the sequence), the number of defects found that 
are attributable to coding errors, the size of the 
module, and the density of defects per thousand 
lines of code. There are more than 100 other 
modules in various stages of development that 
are yet to be inspected, and the questions are 

• Are the inspection teams performing 
consistently? 

• Are the results (the number of defects 
found by the inspection teams) within 
the historical ranges that we used 
when planning our resource and time 
allocations? 

To address these questions, which implicitly deal 
with relations of cause to effect and predicting 
future performance, we must include the defect 
insertion (code generation) subprocess within the 
envelope of the process we are examining. We 
do this because, based on the data alone, there 
is no basis for attributing the number of defects 
found solely to the performance of the inspection 
teams. The variations we see could easily be 
caused by differences in the quality of code 
produced for different modules. When defects are 
scarce, inspection teams may have a hard time 
finding them. If so, it would be incorrect to 
attribute low discovery rates solely to the 
performance of the inspection teams. 

Module 
Number 

Number 
of 

Defects 

Module 
Size 

(SLOC) 

Defects 
per 

KSLOC 
1 19 430 44.2 
2 8 380 21.1 
3 3 134 22.4 
4 6 369 16.3 
5 9 436 20.6 
6 4 165 24.2 
7 2 112 17.9 
8 4 329 12.2 
9 12 500 24.0 

10 8 324 24.7 
11 6 391 15.3 
12 6 346 17.3 
13 2 125 16.0 
14 8 503 15.9 
15 8 250 32.0 
16 3 312 9.6 
17 12 419 28.6 
18 6 403 14.9 
19 3 150 20.0 
20 6 344 17.4 
21 11 396 27.8 
22 2 204 9.8 
23 8 478 16.7 
24 2 132 15.2 
25 5 249 20.1 
26 10 435 23.0 

Total 173 8316 — 

Figure 5-22: Data from Code 
Inspections 
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The question then is whether the overall system is performing consistently over time and 
across all modules with respect to the combined operation of the subprocesses that insert 
and discover defects. If it is not, early detection of process instability could point us toward 
assignable causes and let us make corrections to the coding and inspection processes that 
would make the remaining work predictable. 

When we plot the data from the first 26 modules in the sequence in which the inspections 
were performed, we get the results shown previously in Figure 5-21. To determine whether 
or not the inspection process is stable, we must now compute appropriate values for the 
control limits. To do this, the value for the center line u is first calculated by dividing the total 
number of defects found by the total amount of software inspected. 

Thus, 

u = 
173 

8316 
= 20.8 defects per KSLOC 

The upper and lower control limits are then calculated for each point individually, using the 
formulas stated previously. The calculation of the upper control limit for the first point is 
illustrated below. 

fli = 0.430 KSLOC 

UCL„ =u + 3, — =20.8 + 3 
20.6 
0.430 

=20.8 + 20.9 = 41.7 

Corresponding computations would then be made for the lower control limit, and the two 
computations would be repeated for each point, using the value of a, appropriate to the 
point (a2 = 0.380, a3 = 0.134, and so forth). 

The completed u chart is 
shown in Figure 5-23. 

The first point in Figure 5-23 
falls above its upper control 
limit. This suggests that the 
process might not have 
been in control when it 
started and that an 
assignable cause might be 
found. The reason for the 
out-of-control indication 
should be investigated. If an 
assignable cause can be 
found and if the process has 

60' 

50' 

o 
2   40' 
CO 

■» 

1 30' 

20 

10' 

Defects/ KSLOC for Inspected Modules 

Jl 
\p-^ k^JUU Pi 

1— 
20 

-l- 

25 

UCL 

CL = 20.8 

LCL 
0 5 10 15 

Module Number 
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changed (or been changed) so that the situation will not recur in the future, we can remove 
all values that were affected by the assignable cause and recalculate the center line and 
control limits. This will give us a new center line and control limits that will more accurately 
characterize the performance of the process as it currently exists. 

The results of recalculating 
the control limits when the 
first point is removed are 
shown in Figure 5-24. All 
individual values are now 
within the limits, and the 
average defect rate has 
been reduced to 19.5 
defects per KSLOC. The 
lowering of the center line 
occurred as a result of 
omitting the point that was 
responsible for the initial 
instability. Omitting this point 
is a legitimate step if the 
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Figure 5-24: U Chart with Assignable Cause Removed 

situation that caused the out-of-limits point can never recur. From here on, improvements in 
the performance of the process will require changes to the process itself. 

It may be, though, that the example we have just shown is not really a good illustration of the 
effective use of control charts. Since the point that we eliminated represents the discovery of 
a higher than usual number of defects, the inspection process used for module 1 may have 
been decidedly more effective than the process used for all modules that followed. If the 
investigation of assignable causes finds this to be the case, we should seriously consider 
reinstalling the initial process, throwing out the last 25 data points, and starting over again! 
This is one way that control charts can provoke process improvement. 

On the other hand, if the reason for the high defect discovery rate in the first module lies in 
the module itself or in the process that produced it, the example may be valid as given. It all 
depends on whether or not we can find the cause of the defect-rich module and prevent 
future recurrences. (No one ever said that investigating and correcting assignable causes 
would be automatic or easy!) 

Figures 5-23 and 5-24 illustrate the variable control limits that are associated with using 
distributional models whose mean and standard deviation are determined by a single 
parameter. These variable control limits can make the chart seem difficult to analyze and 
interpret. This problem can be partially avoided when variations in the areas of opportunity 
are small, say less than 20%. Then control limits can be approximated by constant limits that 
are based on the average area of opportunity. Exact control limits can always be calculated 
later, if any points fall near the approximate limits. 
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Z Charts 
Another technique for avoiding variable control limits, and one that works for both large and 
small variations, is to convert the u chart into a Z chart. Here the individual rates u, and the 
average rate u are used to compute values that are scaled in terms of sigma units. To 
construct a Z chart, a sigma value is computed for each point from the equation 

The s/gma-equivalent value for each rate is then 

These values can be plotted just as on any other control chart. The resultant Z chart for the 
data in Figure 5-22 is shown in Figure 5-25. This plot has the same general shape as that of 
Figure 5-23, except that the variation from the center line is now expressed in sigma units. 
This makes it easier to see nonrandom patterns and test for conditions of instability, as 

illustrated in previous examples. 

Defect Density of Inspected Modules 

5      7     9    11    13   15   17   19   21    23   25 
Module Number 

Figure 5-25: An Example Z Chart 
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XmR Charts for Attributes Data 
A third and perhaps the simplest technique for avoiding variable control limits when studying 
attributes data is to plot the data on individuals and moving range charts (XmR charts). 
When you do this, you will be abandoning the Poisson (or binomial) model and assuming 
instead that the standard deviation (sigma) of the phenomena you are studying is constant 
across all observations when the process is in statistical control. Be cautious though. If you 
are plotting rates and a Poisson or binomial model truly applies, this will not be the correct 
thing to do, unless the areas of opportunity are all nearly the same size. When the areas of 
opportunity vary by more than 20% or so, you must examine your assumptions carefully and 
test them for validity. For example, XmR charts may not be the best tools to use for studying 
defect densities, if your modules differ widely in size and you see or have reason to believe 
that the standard deviation of defect density decreases as the size of a module increases 
(as happens in Poisson processes). 

Let us return to the u-chart example and suppose for the moment that we have no theory or 
evidence that suggests that the standard deviation of defect density decreases as module 
size increases. Then XmR charts may make more sense than u charts, and they are much 
easier to plot. The procedure for constructing XmR charts for attributes data is exactly the 
same as for variables data. This procedure was illustrated earlier when preparing Figures 5- 
15 and 5-18. If we use that procedure to analyze the data in Figure 5-22, we get the results 
shown in Figures 5-26 and 5-27. 
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XmR Charts 
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Figure 5-27: XmR Charts with Assignable Cause Removed 

Notice that in this example we arrive at the same conclusions that we reached when using u 
charts and Z charts alone: with the first observation included, the charts signal an out-of- 
control condition at the initial point; with the first observation removed, the data appear to 
describe a stable process. 

So, which charts should you use? In practice, it is likely that none of the traditional charts will 
be exactly right. The "rightness" of a control chart all depends on the validity of the 
underlying probability model—and you can't escape having a model. A probability model is 
always there, even if you don't explicitly articulate it. Sometimes the model has a specific 
distributional form, such as binomial or Poisson (there is seldom need to assume a normal 
distribution). At other times the model simply assumes that sigma is independent of the 
mean, or that the distribution is symmetric. In most (but not all) situations, the model 
requires that processes in statistical control produce observations that are independent and 
identically distributed random variables. Keep in mind, too, that all models are 
approximations. Real-world data seldom, if ever, follow any theoretical distribution. 

If you are uncertain as to the model that applies, it can make sense to use more than one 
set of charts, as we have just done for the data in Figure 5-22. For instance, if you think that 
you may have a Poisson situation but are not sure that all conditions for a Poisson process 
are present, plotting both a u chart (or c chart) and the corresponding XmR charts should 
bracket the situation. If both charts point to the same conclusions, you are unlikely to be led 
astray. If the conclusions differ, then investigations of either the assumptions or the events 
are in order. If you choose to investigate the events, the worst that can happen is that you 
will expend resources examining an in-control process. 
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5.6     Evaluating Process Capability 

There are two common practices in estimating capability which 
have no valid statistical foundation. Engineers should avoid 
using either of them in arriving at estimates or setting 
standards. The things to avoid are the following: 

I. Do not attempt to use a distribution without a control chart. 

II. Do not attempt to use the average of past data without a 
control chart. 

Statistical Quality Control Handbook 
[Western Electric 58] 

Whenever we propose to produce products to meet specifications or to meet deadlines at a 
specified cost with acceptable quality, we find ourselves relying, at least implicitly, on the 
concept of process capability. This concept applies only to stable processes. Before a 
process can be said to have a defined capability, it must display a reasonable degree of 
statistical control. This means that evaluations of process capability must proceed in two 
stages: 

1. The process must be brought into a state of statistical control for a period 
of time sufficient to detect any unusual behavior. 

2. The stable performance of the process must then be compared to the 
specifications that have to be satisfied to meet business or customer 
requirements. 

Attempting to assess the capability of a process that is not in statistical control is fruitless. 
Evaluations of capability invariably get interpreted as predictions of future performance, and 
it is unrealistic to expect records of past performance to be reliable predictors of the future 
unless you know that the underlying system of chance causes is stable. 

On the other hand, when a process is in statistical control with respect to a given set of 
attributes, we have a valid basis for predicting, within limits, how the process will perform in 
the future. As long as the process continues to remain in the same state of statistical control, 
virtually all measurements of those attributes will fall within their natural process limits. 

Capability Histograms 

The simplest and easiest way to assess the performance of a stable process with respect to 
a given attribute is to plot a histogram of the individual values that have been observed 
during a period of stability. The natural process limits (i.e., the control limits for individual 
values) can then be used to characterize the performance. These limits can be computed 
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from the grand average and average range of the measured values by using the following 

formula: 

= =      R 
Natural Process Limits =X±3sigmax = X±3— 

The ranges that are averaged can be either those of the subgroups used to construct an X- 
bar chart or the moving ranges used to plot an XmR chart. When two-point moving ranges 
associated with XmR charts are used, d2 will equal 1.128, and the equation reduces to 

Natural Process Limits = X± 2.660 R 

Figure 5-28 shows a histogram of the 80 individual values recorded in Figure 5-11 (the 
Homogeonics example). Since our analyses of these data in Figures 5-12 through 5-15 
showed no signs of lack of control, we are justified in computing the natural process limits 
and plotting them on the histogram. These limits, which are the same as the upper and 
lower limits that would be used on a control chart for individual values, are designated in 
Figure 5-28 by UCL and LCL. For the Homogeonics data, all 80 of the measured values fall 
within the range given by the natural process limits. 
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Figure 5-28: A Process Capability Histogram 

The natural process limits in Figure 5-28 represent the voice of the process. They reflect 
what the process can be expected to do as long as it continues to operate as it has over the 
past 80 days. A stable process will continue to produce results that are almost always within 
its natural process limits until some event occurs that causes the process or its inputs to 

change. 
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The second stage of a capability analysis consists of comparing the natural process limits to 
the specifications imposed by business needs or customer requirements. When the natural 
limits fall entirely within the specification limits, almost every product that is produced will 
conform to specifications. Such a process is said to be capable. If a process is not capable, 
it will produce nonconforming results at rates that may be economically inefficient. 

Thus a simple way to assess whether or not a process is capable is to plot the specification 
limits on the histogram of measurements obtained from a stable process. The relationship of 
the natural process limits to the specification limits will portray the capability of the process. 

Suppose, for instance, that the software manager at Homogeonics, Inc. requires product- 
service staff hours per day to fall between a value of 30 at the lower limit (to guarantee that 
customer requests are logged and acknowledged) and 50 at the upper limit (to ensure that 
critical skills are available for other activities). If the distribution is expected to be symmetric, 
the optimal value for the average daily product-service staff hours will be 40, the midpoint of 
the desired range, as used in his plans. The manager's requirements, which are effectively 
his specifications, are illustrated in Figure 5-29. (LSL and USL are the lower and upper 

specification limits, respectively.) 
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Figure 5-29: Process Capability Histogram with Specification Limits 

Fraction Nonconforming 
Individual values that fall outside the specification limits are instances of nonconformance to 
specifications. The fraction of the total observed outcomes that are nonconforming in a 
stable process gives an unbiased estimate for the fraction of nonconforming outcomes 
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associated with the process. The statistical term for this is fraction nonconforming. In the 
Homogeonics example, 5 out of the 80 days had nonconforming results (the data in Figure 
5-11 show 5 values above 50 and none below 30). This suggests that about 6.25% of the 
days in the underlying population experience service staff hours that exceed specifications. 

Some caution is in order here. Although the observed fraction nonconforming is an unbiased 
estimate of the true fraction nonconforming in a process, it is seldom a precise estimate. 
Unless you have many more than 80 data points, the uncertainties will be much larger than 
you might expect. For instance, when n is large (greater than 30, say), the observed fraction 
nonconforming f will be approximately normally distributed. We can then compute 
(approximate) 95% confidence intervals for the true fraction nonconforming p as follows: 

p-/±,-/«!=ü 
n 

For the Homogeonics data, this yields 

p = .0625±1.96j^5C9375) = 0625± 0530i 

V 80 

an interval that ranges from 0.0095 to 0.1155 (0.95% to 11.55%). These numbers are not 
precise, however, since the normal approximation to the binomial distribution becomes less 
reliable as /approaches 0 or 1. When the observed fraction nonconforming is close to these 
limits, you may prefer exact methods like those described in Section 7-3 of the National 
Bureau of Standards handbook Experimental Statistics or in Hahn and Meeker's book 
Statistical Intervals [Natrella 66, Hahn 91]. For the Homogeonics data, the exact method 
yields a 95% confidence interval for the true fraction nonconforming that ranges from 2.5% 
to 14.5% (interpolated approximately from Natrella's graphs). 

Although estimates based on empirical counts of the fraction nonconforming make few 
assumptions, they are not necessarily the best estimates for the true fraction nonconform- 
ing. The reason is that counting the number of items that fall outside specification limits uses 
only a portion of the information contained in the full set of measured values. Sometimes 
better estimates are possible—if certain conditions are present. 

For instance, if you have reason to believe that the variation in a stable process is the sum 
of several independent small effects and that no individual effect is much larger than the 
others, you may be justified in assuming that the measurements approximate independent 
and identically distributed observations from a normal distribution.21 When independence, 
identicality, and normality are present, you can use the normal distribution to estimate the 
fraction nonconforming in the underlying distribution. The procedure and tables for doing this 

21Shewhart and Wheeler both point out that assumptions like this are essentially unverifiable. Caution 
is warranted when assuming normality, just as when assuming the relevance of any other distribution 
[Shewhart 39, Wheeler 92]. 
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are given on pages 58-59 and 133 of the Western Electric handbook [Western Electric 58]. 
In the Homogeonics case, this procedure gives an estimate of 4.7% nonconforming. 

Despite their familiarity and intuitive appeal, however, confidence intervals for the fraction 
nonconforming (and for other parameters of the underlying process) may not be the proper 
tools to use. What really affects your decisions are not the uncertainties in estimates for the 
underlying parameters, but uncertainties associated with future outcomes. The probability 
that the next result will fall outside the specification limits, for example, has direct economic 
consequences, as does the proportion of future results that will be nonconforming. 
Confidence intervals do not address these issues. Instead, you should use prediction 
intervals (if concerned with one or more specific future observations) or statistical tolerance 
intervals (if concerned with uncertainties in the fraction nonconforming in all future 
outcomes). The calculations for these intervals are generally no more difficult than those for 
confidence intervals [Hahn 93]. If you wish to pursue this subject (we encourage you to do 
so), you can find discussions of prediction and tolerance intervals and methods for 
computing them described in papers by Hahn, Scheuer, and Vardeman and in Hahn and 
Meeker's book Statistical Intervals [Hahn 70, 91, Scheuer 90, Vardeman 92]. 

Capability Indices 
In lieu of the graphical summary of capability that a histogram provides, many people 
compute numerical summaries. Values with names like Cp and Cpk are often used in an 

attempt to reduce measures of capability to a single index. Although these indices are often 
used alone, they are more effective when combined with a histogram. Deming explains why: 

The fallacy of an index of dispersion, widely touted by 
beginners taught by hacks, is now obvious. An index of 
dispersion has no meaning, because the loss entailed 
depends far more on the position of the centre of the 
distribution of production than on its standard deviation. 

W. Edwards Deming, 1993 

Our advice is to stick with graphical representations. They are not only more informative, but 
also easier to explain than excessively condensed indices. If someone insists on having a 
value for Cp or Cpk, provide it, but provide the graphical summary as well. You will both be 

better served. 

Specification Tolerances 
When one (or both) of the natural process limits falls outside the specification limits, as 
happens in Figure 5-29, the process is likely to produce nonconforming results more 
frequently than desired, even when it is in statistical control. For example, in Figure 5-29 the 
process is stable, but 6.25% of the results have fallen outside the specification limits. 
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Processes with a large number of nonconforming results can be stable, but they are not 
capable. To reduce the amount of nonconforming product or the frequency of 
nonconformance to other process standards, action must be taken to change the process. 
The changes must have one or more of the following objectives: reduce process variation, 
reset the process average, or relax the specifications. 

You can test whether or not specification limits are wide enough to allow for natural process 
variation by calculating the specification tolerance—the distance between the specification 

limits—as follows:22 

Specification Tolerance = Upper Spec - Lower Spec 

.  v   Specification Tolerance 
Specification Tolerance (in sigma units) = — :  r sigmax 

where sigmax = — 
d2 

When the tolerance exceeds six sigma units and the process is centered within the 
specification limits, the specification leaves sufficient room for process variation without 
producing large amounts of nonconforming product. When the specification tolerance is less 
than six sigma units, extreme values will frequently exceed the specification limits, 
regardless of the centering. 

One reason a process may not be capable is that it may not be sufficiently centered. That is, 
the average of its measured values may not fall at an appropriate point within the 
specification limits. For symmetric distributions, the way to remedy this problem is to change 
the process so that the process average is brought closer to a value midway between the 
limits. We can determine how much adjustment is needed to center the process average by 
calculating the distance to the nearest specification (DNS). 

First, some background: the distance in sigma units between the process average and the 
upper and lower specification limits (USL and LSL) is given by: 

_  _ USL - Process Average 
£-u — : 

sigmax 

7 _ Process Average - LSL 
L sigmax 

If the process average is within the specification limits, the values of Zaand Z^will both be 

positive. If the process average is not within the specification limits, one of the Z values will 

22Specification tolerances (sometimes called engineering tolerances) are related to statistical 
tolerance intervals only when the upper and lower specification limits have been chosen based on an 
analysis of statistical tolerance intervals. 
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be negative. To hold the number of nonconforming items to an economical value, it is 
desirable that both Z values be positive and greater than three. When both values are 
positive, the smaller of the two is called the distance to the nearest specification (DNS). 

Figure 5-29 shows a process limit that exceeds the specification limits, so we can use the 
example to illustrate the procedures just described. To satisfy the specifications, the 
tolerance must exceed six sigma units. To check this, we compute 

e      ■«■    *•     T i / ■ •♦ x USL-LSL 50-30 Specification Tolerance (sigma units)   =   —:     =       „ , , 
sigmax mR / d2 

20 
(3.38/1.128) 

=    6.67 

Thus, the process is currently meeting this requirement. The distance to the nearest 
specification, however, is 

P/VS^SL-* = 
50-45-03 = 1.68 

sigma x 2.996 

This is well below the value of three needed to avoid an excessive number of nonconforming 
results. 

To comply with the specifications, Mr. Smith (the manager at Homogeonics, inc.) will have to 
change the process so that the average number of product-service hours per day 
decreases. If the variability is symmetric about the average, the optimal value for the new 
average will be the point midway between the specification limits, coinciding with his original 
planning target of 40. If this change can be made, the DNS will become 

DNS=USL-X = 5Q-40=3M 

sigmax      2.996 

The tactics that Mr. Smith might use to shift the mean include improving a number of 
attributes or subprocesses. Product quality, user documentation, customer training, the 
handling of service requests, and the process that assigns staff to service requests are 
possible examples. Of course, any changes that he introduces will create a new process. 
The performance of the new process should then be monitored and plotted on run charts, 
and new control limits should be constructed as soon as sufficient data are available. Once 
the process appears to be stable, its capability can be re-evaluated. 

The advantage of using the specified tolerance and the DNS to characterize the capability of 
a stable process is that the two measures focus attention on the areas that need 
improvement. Instead of using artificial index numbers or simple values for percent defective 
or percent nonconforming, the DNS relates directly to the data in ways that make it easy to 
understand just how the process is performing relative to the customer's specifications. 
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A Procedure for Assessing Process Capability 

The flowchart in Figure 5-30 gives an orderly procedure for assessing process capability 

[Wheeler 92]. 
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Figure 5-30: Assessing the Capability of a Stable Process 
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6      Applying Measures to Process Management—Part 3: 
Acting on the Results 

Discovering that a process is out of control is not a terrible 
event. It should not be hidden from supervisors, managers, 
auditors, quality control experts, or, most important, 
customers. In a sense, it is an event that should be celebrated 
because it gives the process owner an opportunity to improve 
the process. 

Robert Hoyer & Wayne Ellis, 1996 

We are now at the third step in applying measurements to process management and 
improvement. The objective here is to translate what you have learned from analyzing 
stability and capability into actions that will improve the efficiency of your processes and the 
quality of your products. Figure 6-1 highlights the focus of the chapter. 

Collect and 
Retain 
Data 

Chapter 

Figure 6-1: The Focus: Act on the Results 

Sections 6.1 through 6.3 point out important aspects of investigations aimed at achieving 
process stability and improved levels of performance. Section 6.4 then gives brief 
illustrations of some of the more useful tools that are available to help you with your 
investigations. We will not teach you how to use the tools, but we will provide you with 
insights regarding their use that you may not have encountered before. Section 6.5 closes 
the chapter by listing methods and technologies that organizations have found effective for 
improving software products and processes. 

6.1     General Principles 

The Additional Roles of Measurement 
When process measurements are analyzed as in Chapter 5, the results point to one of three 
investigative directions: 

• Stability. If the process is not stable, the proper action is to identify the 
assignable causes of instability and take steps to prevent the causes from 
recurring. Decomposing a process into its subprocesses and examining the 
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subprocesses for stability is often a productive approach for pinpointing the 
roots of assignable causes. 

• Capability. If the process is stable but not capable (not meeting customer 
needs), the proper action is to identify, design, and implement changes that 
will make the process capable. Keep in mind that changing a process 
transforms it into a new process, and the new process must be brought 
under control and made stable before its capability can be assessed. 

• Improvement. If the process is both stable and capable, the proper action 
is to seek ways to continually improve the process, so that variability is 
reduced and quality, cost, and cycle time are improved. Brainstorming, 
designed experiments, multivariate analyses, and investigations of 
subprocesses can all provide helpful insights into ways for improving 
process performance. Once more, any changes to a process will transform 
the process into a new process whose stability must be established before 
you can rely on predictions of future performance. 

Figure 6-2 shows the how these actions relate operationally to the business goals and 
strategies of an organization. The actions that should follow stability and capability 
measurement are highlighted by the shaded box. 

X 
Clarify business goals and strategy 

Identify and prioritize issues 

Select and define measures 

Measure process performance 

Continual 
improvement 

Figure 6-2:  The Actions that Follow Evaluations of Process Performance 
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Although Figure 6-2 gives a good overview of the logical process described in this 
guidebook, there is more to measuring for process management and improvement than the 
figure suggests. For example, there is 

1. the role that measurement (and perhaps designed experiments) plays in 
finding, confirming, and eliminating root causes of instabilities and 
inadequate performance. (What is causing the problems we see?) 

2. the role that measurement (and perhaps designed experiments) plays in 
identifying cause-effect relationships. (Which factors should we change 
when we wish to improve?) 

3. the role that measurement plays in quantifying cause-effect relationships. 
(How large a change should we make?) 

4. the role that measurement plays in estimating costs and benefits 
associated with present levels of performance and proposed 
improvements. (What are the costs and benefits now? What will they be 
after the changes? What will it cost to make the changes? How long will it 
take?) 

5. the role that measurement plays in obtaining descriptive information that 
can guide interpretations and actions. (What are the other characteristics 
of the product, process, system, environment, resources, and customer 
that we are addressing?) 

We have talked about the fifth role (gathering contextual information) in Chapters 2 and 4. 
The purpose of this chapter is to address roles 1-4 and provide pointers to tools that can 
help you get the' other information you will need to turn the insights you have gained into 
actions that work. 

The Need for Additional Information 

Statistical analysis of data that just happens to be available is 
very risky. 

Thomas Pyzdek, 1992 

Once you find that a process is either unstable or performing at an unacceptable level, you 
will almost always need additional information to help you find the assignable causes and 
devise remedial actions. Some of this information may well exist now, somewhere within the 
organization. You should strive to find it and pull it together. Other kinds of information may 
not have been assembled before. Getting this information may mean measuring additional 
attributes of the product, process, or environment. 
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There are three reasons for gathering additional data: 

1. to support or invalidate hypotheses about possible causes of instability 

2. to identify, verify, or quantify cause-effect relationships, so that the right 
amounts of the right changes can be made 

3. to estimate (or confirm) the business value of the actions that are proposed 
(or taken) to improve the process 

There is also the pragmatic reason that, whatever action you propose, you will have to 
convince others to assist you in funding and implementing the changes. Without factual 
evidence to support the rationale for proposed actions, people will have every right to 

challenge your proposals. 

Perceptive readers will observe that the discussion above exposes the recursive nature of 
measurement—at least as it applies to process management and improvement. Discovering 
that a problem exists is only the start of a journey. The next questions are "Why?", "What 
can we do about it?", and "How much is it worth?" Obtaining reliable data to identify and 
justify effective actions means returning to the same logical process that we have been 
illustrating for detecting the existence of problems: 

select -*■ define -» collect -* analyze -> act 

The analytic methods that you will use to identify root causes and solutions, though, may be 
different from the ones you used for investigating process stability and capability. Section 
6.4 will illustrate just a few. You can find others discussed in almost any treatise on quality 
improvement or creative problem solving. Two often overlooked tools that we call to your 
attention are design of experiments and multivariate analysis. If software engineering is to 
continue to mature along the lines of other scientifically based disciplines, these tools are 
likely to see increasing use. 

When you begin your search for explanatory data, there are general principles that you 
should recognize. Ott and Schilling offer three [Ott 90]: 

Rule 1: Don't expect many people to advance the idea that the problem is their 
fault. Rather it is the fault of raw materials and components, a wornout 
machine, or something else beyond their own control. "It's not my 
fault!" 

Rule 2: Get some data on the problem; do not spend too much time in initial 
planning. (An exception is when data collection requires a long time or 
is very expensive; very careful planning is then important.) 

Rule 3: Always graph your data in some simple way—always. 
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6.2     Establishing Stability 

Finding and Correcting Assignable Causes 

An assignable cause of variation as this term is used in quality 
control work is one that can be found by experiment without 
costing more than it is worth to find it. 

Walter A. Shewhart, 1939 

When you find a process that is not stable, you should try to find assignable causes and 
take actions to prevent their recurrence. This calls for detective work that is not unlike that of 
debugging a failing software component. You will not be far off track if you think of the hunt 
for an assignable cause as the equivalent of the hunt for the cause of a software failure. 

As with software, when process outputs vary erratically, one of the best things to do is to try 
to isolate the problem (or problems). To begin, you may want to assemble a group of people 
who work within the process to brainstorm possible reasons for the unusual behavior. 
Ishikawa charts and Pareto diagrams can help to focus the discussions and summarize the 
results.23 

You may also find that you want to measure key parameters of some of the inputs to the 
process and plot run charts (or control charts) to see if anything unusual is happening. Out- 
of-control inputs, for example, can cause out-of-control outputs. When out-of-control inputs 
are found, this will push your search for root causes and corrective actions to points earlier 
in the overall process. 

Parallel input streams of supposedly similar items can also be sources of erratic behavior 
when the inputs have different characteristics. The symptoms often show up as 
stratifications in control charts of process performance (stratification patterns show many 
values toward the outer edges of the control chart and relatively few near the center line). 

Another strategy for isolating problems is to begin measuring and plotting characteristics of 
intermediate products, so that you can better identify where in the process erratic behavior is 
first making its appearance. 

Awareness of the environment and what has been happening within the organization can 
provide valuable clues to the nature of assignable causes. But important as these clues and 
insights are, the best that they can do is to help you form hypotheses. You will almost 
always need data (and perhaps experiments) to test the hypotheses and to support or 
eliminate specific factors as assignable causes. This means that measurement, with all its 

23lshikawa charts and Pareto diagrams are illustrated in Section 6.4. 
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subactivities—selecting, defining, collecting, retaining, analyzing, and acting—will once 
again be needed. 

Sometimes assignable causes, once found, can point the way to improving process 
performance. For example, an unusual series of events or an inadvertent change to the 
process may cause the process not only to become unstable, but also to improve—at least 
momentarily—certain aspects of quality. When this happens and the assignable causes can 
be replicated, it may be profitable to incorporate the causes of the beneficial results as 
permanent parts of the process. Finding and making changes that will improve process 
performance is the topic of Section 6.3. For the moment, when instabilities are present, the 
first order of business is to isolate and eliminate the elements that are making the process 

unstable. 

It is important to recognize that correcting assignable causes is not the same as changing or 
improving a process. Eliminating assignable causes merely brings a process to a repeatable 
state. But this is a very important state to achieve. When a process is not stable, it seldom 
makes sense to introduce changes to improve capability or performance. Without stability as 
a baseline to start from, you are likely to simply trade one unstable condition for another. 

Noncompliance as an Assignable Cause 
Compliance means that standards of knowledge and practice exist and are followed. 
Compliance also means that the process is supported adequately and that the organization 
is capable of executing the process. When a process component is not performing 
consistently, lack of compliance to process standards may be the cause of the instabilities 
you see in process results. 

Processes get designed, either implicitly or explicitly, around four kinds of knowledge: a 
process definition; the known or estimated performance of process components; the 
existence and effectiveness of support systems; and the anticipated effects of organizational 
factors such as management support, organizational changes, and personnel policies and 
actions. Therefore, when investigating compliance (or the lack thereof) as a potential source 
of process instability, the following aspects of compliance should be examined: 

• adherence to the process 

• fitness and use of people, tools, technology, and procedures 

• fitness and use of support systems 

• organizational factors, such as management support, organizational 
changes, personnel turnover, relocations, downsizing, and so forth 

Figure 6-3 lists some of the things to examine when searching for causes of noncompliance. 
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Compliance Issues Things to Examine When Seeking 
Reasons for Noncompliance 

Adherence to the process awareness and understanding of the 
process 

existence of explicit standards 

adequate and effective training 

appropriate and adequate tools 

conflicting or excessively aggressive 
goals or schedules 

Fitness and use of 
people, tools, technology, 
and procedures 

availability of qualified people, tools, 
and technology 

experience 

education 

training 

assimilation 

Fitness and use of 
support systems 

availability 

capacity 

responsiveness 

reliability 

Organizational factors lack of management support 

personnel turnover 

organizational changes 

relocation 

downsizing 

disruptive personnel 

morale problems 

Figure 6-3:  Compliance Issues and Potential Sources of Noncompliance 

Establishing and maintaining baselines of information about compliance can help in finding 
assignable causes. Deviations from baselines when executing a process are potential 
sources of instability. When historical information is not available to serve as a baseline, you 
may want to begin measuring aspects of compliance to obtain data that shed light on the 
origins of process instabilities. Baselines of information about process components and 
activities should be among your considerations when designing a process measurement 
database. 

Many of the issues and methods associated with obtaining and retaining compliance data 
have been discussed already in Sections 2.3 and 4.2. Reviewing those discussions can help 
you get started when you sense that instabilities in process results may be caused by 
deviations from the intended process. 
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6.3     Improving the Process 

The most important use of a control chart is to improve the 
process. 

Douglas C. Montgomery, 1996 

...most control charts, even if used correctly, are used too 
late—too far downstream to be of any substantial benefit. 

W. Edwards Deming, 1986 

Improving process capability requires 
making changes either to the process or its 
specifications. Figure 6-4 illustrates the three 
possibilities: 

1. We can reduce variability 
while keeping the average 
the same. 

2. We can retarget the 
process by shifting the 
average. 

3. We can revise the 
specification so that more 
of the results fall within the 
specification limits. (As this 
is a negotiation issue 
rather than true process 
improvement, we will not 
discuss this case further.) 

Mean 

Shift the Aim 

Upper Spec 

Upper Spec 

Change the Specs 

Figure   6-4:  Three Ways to Improve 
Process Capability 

Where to Look When Seeking Improvements 

It is easy and almost inherent in us to look for and find 
solutions. It takes discipline to first stop and look for causes. 

Tony Burns, in a posting to 
bit.listserv. quality, January 1997 

There are two places to look when seeking ways to improve process performance: 

• process activities and subprocesses 

• things used within the process that originate outside the process 
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The knowledge you have of your process (supported by evidence where available) will guide 
you in directing your attentions inward or outward. It may be that you will want to look in both 

directions simultaneously. 

When looking inward, your strategy will be to decompose (divide and conquer). By breaking 
a process down into its component activities and subprocesses, you will often find points 
where intermediate products are produced. The output streams from these processes then 
become candidates for measurement and analysis, and control charts may once more be 
appropriate tools—especially if reducing variability is an issue. 

When looking outward, just as when eliminating instabilities, the characteristics of the 
materials, resources, and guidelines you work with can limit what your process can achieve. 
If materials, resources, or guidelines constrain the performance you seek to improve, you 
may have to go back to the origins of these entities to find ways to change your level of 
performance or reduce variation in process results. 

Figure 6-5 lists some common process entities that have origins outside the process. These 
are things that you may want to examine when seeking ways to improve a process. If the 
stability and variability of attributes associated with these entities can significantly affect the 
operation of your process, you will want to consider implementing measures that help 
quantify, control, and improve those attributes. This may easily lead you back to issues like 
the ones addressed in earlier chapters of this guidebook, but with attention now directed to 
other parts of the overall software process. 

Entities Originating Outside a Process Whose 
Attributes Can Affect Process Performance 

products and by-products from guidelines and directions 
other processes • policies 

resources • procedures 
• people • goals 
• facilities • constraints 
• tools • rules 
• raw materials • laws 
• energy • regulations 
• money • training 
• time • instructions 

Figure 6-5:  Inputs that Affect Process Performance 

As one example of the importance of looking upstream, consider a system testing process. 
The best way to reduce the time, rework, and cost of system testing may lie not in the 
testing process itself, but in the quality of the incoming artifacts it tests. Improving the 
economics of testing may not be possible without improving key parts of the upstream 
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processes—the activities where defects are inserted and the points where prevention, 
detection, and removal activities can be implemented or made more effective. 

When examining the performance of upstream processes, you may find that they in turn are 
affected by elements that originate from outside. Dictated schedules (time) and tight budgets 
(money) are just two examples. Restrictions on time and money have been known to lead 
organizations to scrimp on the efforts they allocate to preventing and detecting defects 
during design and coding. The upstream processes may meet their time and budget goals, 
but the downstream impacts can easily outweigh the upstream benefits. In one sense, 
looking outside the testing process is an issue of balancing the performance of the overall 
software process (i.e., the system). In another sense, if the organization knows that 
inspections work well, has data to suggest what the optimal levels of inspection might be, 
and would usually perform at that level, this may be just another instance of process 

noncompliance. 

Effects of Changing a Process: Look Before You Leap 
When you propose actions that are intended to improve a process or adjust it to meet 
specifications, you should always examine the effects that the changes will have on other 
processes in the stream of work. (The Law of Unintended Consequences is ubiquitous.) 

Downstream effects. Changes that reduce variability while keeping the average 
about the same will usually be welcomed—they often improve the efficiency of 
downstream activities. Reductions in variability seldom have detrimental effects. 
Changes that shift the average, on the other hand, are quite likely to affect 
downstream processes, and the consequences should be examined closely. It will be 
unwise to make these kinds of changes unless the new level somehow benefits the 
people and processes that rely on the results of the process you are improving. 

Upstream effects. Not all effects flow downstream. Sometimes there are feedback 
loops where measured qualities of outputs from a process are used to control or 
specify attributes of its inputs. For example, high rates of defects found in testing can 
induce increased investment in inspection, thus changing the quality of outputs from 
earlier parts of the process. 

Knowing and quantifying the benefits of reduced variability or new levels of performance can 
help greatly in gaining support and funding for investigating ways to move the process mean 
and for implementing changes to the process to reduce variation or reset its level of 
performance. 

After the Change: Examine the Results 
After you change a process to stabilize or improve its performance, you should always 
examine how the results affect the performance and opportunities for improvement in other 
processes in the stream of work. 
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Downstream opportunities. Reduced variability in the inputs to downstream 
activities can create opportunities for improvement there by making it easier for those 
activities to isolate and reduce their own local causes of variability. This could make 
control charting useful where it was not before because natural process variability 
was getting overwhelmed by outside influences. Reduced variability in inputs to 
downstream activities can also lead to more precise planning, since the downstream 
processes will now be able to rely on the quality and timing of the inputs they 
receive. 

Upstream opportunities. Reduced variability in outputs whose measured values 
are used to control or influence upstream activities can affect the dynamic behavior 
of the overall system. This can create opportunities for improving system 
performance that are not obvious unless you look for them. For example, improving 
performance or reducing variability in one part of a system may permit you to use 
different methods or sensitivities for detecting and signaling changes in process 
performance. When the inherent variability is small, for instance, you can often 
detect and react quickly to shifts in the average level of process performance. 
Moreover, more predictable performance means that sensors can sometimes be 
reduced to occasional use or relocated, which may provide opportunities to change 
the points upstream where control is applied. 

Other kinds of opportunities can flow upstream as well. For example, when the 
performance of a downstream process is improved, the high payoff areas for future 
improvement often shift upstream. Sometimes these kinds of opportunities for 
improving overall system performance are not possible until the downstream process 
you are working on is made more consistent, efficient, agile, and responsive.24 

Conditions for Success 

The process is always changing. Always. And in most cases 
the reduction in variation achieved by eliminating special 
causes is only a small fraction of the total variation. The real 
payoff is in reducing variation from common causes. But the 
mindset of classical, enumerative statistics inhibits this activity. 
The questioning, probing, exploratory approach combined with 
analytic tools like the control chart encourage you to find the 
cause of all of the variation. When evaluating the control chart 
off-line, forget the control limits. Investigate the chart as a 
whole, examine the patterns. Relate the data to what the team 
knows about the process. Place the charts end-to-end on a 

24The successes of JIT (just in time) methodologies in industry illustrate the kinds of benefits that are 
sometimes available through interactions among processes. 
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large table and look for cycles and patterns across several 
charts. 

Brainstorm. Be OHIpen minded. Think! 

Thomas Pyzdek, 1992 

To succeed in finding ways to improve process performance, just as when searching for 
assignable causes, knowledge of the process—its activities, intermediate products, people, 
tools, and work flows—is paramount. It is this knowledge that points you to likely areas to 
investigate. This is one reason why responsibilities for process control and process 
improvement cannot be delegated to statisticians and staff scientists. Specialists can help, 
but responsibilities for improvement and for knowing the subject matter lie with those who 
own and operate the processes. 

Remember that when you introduce improvements, the improvements will change the 
process. Changes mean instability, and instabilities lead (at least temporarily) to lack of 
predictability. You will not get the most from further improvement actions until you achieve 
stability at the new level of performance. 

Does this mean that you should be reluctant to introduce changes? Not at all! At least not 
when you have stable baselines against which to measure the results of your actions. 
Without stable baselines, though, you may have difficulty determining whether or not your 
actions have the effects intended. This means that the wisest first step is often to bring the 
existing process under control. Then, at least, you will know where you are starting from, 
and you can measure how well the improvements work. Without baselines, you will just be 
guessing. 

6.4    Tools for Finding Root Causes and Solutions 

...any sophisticated statistical analysis should always be 
supplemented with easily understood graphics that can be 
evaluated by people who can relate the conclusions to the 
process; people who may lack training in advanced statistical 
analysis. 

Thomas Pyzdek, 1992 

As you collect data to investigate assignable causes and potential improvements, you will 
often face the need to sort through and understand the information you obtain. This involves 
organizing and summarizing your data and looking for patterns, trends, and relationships. 
Tools such as scatter diagrams, run charts, cause-and-effect diagrams, histograms, bar 
charts, and Pareto charts can all help you here. These tools are described briefly below and 
illustrated in greater detail in the pages that follow. 
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• Scatter diagrams display empirically observed relationships between two 
process characteristics. A pattern in the plotted points may suggest that the 
two factors are associated, perhaps with a cause-effect relationship. When 
the conditions warrant (i.e., a constant system of chance causes), scatter 
diagrams are natural precursors to regression analyses that reveal more 
precise information about interrelationships in the data. 

• Run charts are a specialized, time-sequenced form of scatter diagram that 
can be used to examine data quickly and informally for trends or other 
patterns that occur over time. They look much like control charts, but 
without the control limits and center line. 

• Cause-and-effect diagrams (also know as Ishikawa charts) allow you to 
probe for, map, and prioritize a set of factors that are thought to affect a 
particular process, problem, or outcome. They are especially helpful in 
eliciting and organizing information from people who work within a process 
and know what might be causing it to perform the way it does. 

• Histograms are displays of empirically observed distributions. They show 
the frequencies of events that have occurred over a given set of 
observations and period of time. Histograms can be used to characterize 
the observed values of almost any product or process attribute. Examples 
include module size, defect repair time, time between failures, defects 
found per test or inspection, and daily backlogs. Histograms can be helpful 
for revealing differences that have taken place across processes, projects, 
or times. 

• Bar charts are similar in many ways to histograms, but they need not be 
based on measures of continuous variables or frequency counts. 

• Pareto charts are a special form of histogram or bar chart. They help focus 
investigations and solution finding by ranking problems, causes, or actions 
in terms of their amounts, frequencies of occurrence, or economic 
consequences. 

The sections that follow give brief descriptions of these analytical tools and techniques. 
More complete illustrations, albeit in nonsoftware settings, can be found in several 
references [Ishikawa 86, Brassard 88, Brassard 89, Montgomery 96]. We particularly 
commend the 1986 revised edition of Ishikawa's Guide to Quality Control [Ishikawa 86]. 

The Venn diagram in Figure 6-6 shows where the tools described in the following pages fit 
relative to the fact-finding and analysis activities that lead to identifying root causes and 
potential solutions [Brassard 88, 89]. 
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Figure 6-6:  Application Areas for Analytic Tools 
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Scatter Diagrams 

Description 
A scatter diagram is a plot of observed values that shows how one variable has behaved 
relative to another. Scatter diagrams are often used as a first step in the exploration of data, 
especially as part of a search for cause-effect relationships. Sometimes there is an 
assumption that one variable is "dependent" and the other "independent," but this does not 
have to be the case. 

Scatter diagrams are used to address questions such as "Does company A's product work 
better than company B's?", "Does the length of training have anything to do with the number 
of defects an engineer injects?", "Are there any obvious trends in the data?", and so forth. 
When a scatter diagram suggests that a relationship may exist between two variables, its 
use is often followed by more formal statistical methods such as exploratory data analysis or 
regression analysis. 

Scatter diagrams (sometimes called scatter plots) are limited in that they usually deal with 
only two variables at a time. This constraint exists because the results are displayed on 
sheets of paper or CRT screens, both of which are two-dimensional media. When you have 
reason to investigate more than two dimensions at a time, you will likely want to use more 
formal (statistical) methods that facilitate multivariate analyses. Here, though, the pitfalls are 
many, and it is easy for amateurs to go astray. We strongly suggest that you solicit the 
assistance of a competent statistician. Furthermore, we urge you to do this before the data 
are collected. Good statisticians know things that will help you get data in ways that will help 
you reach valid conclusions economically. 

Example 

Development Effort (person months) vs. Size (KSLOC) 
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Figure 6-7:   Example of a Scatter Diagram 
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Run Charts 

Description 
Run charts are plots of individual values arranged in a time sequence. They can be used to 
monitor a process to see if trends are apparent or if the behavior of the process is changing 
in other ways. Observed values of production throughput, product size, team size, number of 
defects found, backlogs, and cumulative or daily resource consumption are all candidates 
for run charts. Run charts can visually display the behavior of any interval- or ratio-scale 
variable. 

One danger when using a run chart is the tendency to see every variation in the plotted 
values as being important. The control charts that have been illustrated in Chapter 5—with 
their control limits, run tests, and formal tests for unusual patterns—were developed 
specifically to counter this tendency. In one sense, run charts are nothing other than 
precursors to control charts. But run charts can also be used when trends are known to 
exist, so that control charts (in their standard form) do not apply. Although interpreting run 
charts can be risky without a formal methodology, it is often possible to relate sudden shifts 
in plotted values or trends to specific events. When these relationships exist, it is helpful to 
annotate the run chart to indicate the events. 

Run charts, like Pareto charts and histograms, refer to events that occurred in a particular 
time period. Thus, they should show the time period covered, the frequency of measurement 
(if appropriate), and the unit of measurement used. Center lines such as medians of means 
(averages) are sometimes shown, but this can induce misinterpretation when the process 
that produced the data is not under statistical control. 

Examples 

Observed 
Value Median 

«Time 

Observation Number 

Figure 6-8:  Example of a Run Chart with Level Performance 
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Figure 6-9:   Example of a Run Chart with a Rising Trend 
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Figure 6-10: Example of a Run Chart with a Falling Trend 
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Cause-and-Effect Diagrams 

Description 
A cause-and-effect diagram is a graphical display that is used to probe for and show 
relationships between a problem (the effect) and its possible causes. They are often called 
Ishikawa charts, after the man who originated them in 1943 [Ishikawa 86]. They are also 
called fishbone charts, due to their visual similarity to the skeleton of a fish. 

When cause-and-effect diagrams are used to explore the behavior of a process, it is best if 
the diagrams are assembled by people who actually work in the process. When it comes to 
pinpointing problems and searching for root causes, there is no substitute for first-hand 
knowledge. 

It is also wise to have people expert in different parts of the process participate. Diagrams 
drawn by one or two people are apt to be ineffective because they lack a sufficiently broad 
base of observational experience. For this reason, cause-and-effect diagrams are often 
drawn during brainstorming sessions that include people with differing viewpoints. 

Although cause-and-effect diagrams are (initially) subjective, they can be based on (and 
annotated to show) factual information such as measured values and dates of occurrences. 

Cause-and-effect (CE) diagrams can be divided into three types [Ishikawa 86]: 

1. the dispersion analysis type 

2. the production process classification type 

3. the cause enumeration type 

The dispersion analysis type of cause-and-effect diagram is constructed by repeatedly 
asking the question, "Why does this dispersion (i.e., scatter) occur?" Its strong point is that it 
helps organize and relate factors that cause variability in products and other process 
outcomes. Its weak points are that the form of the resulting diagram is dependent on the 
views of the people making it, and that small causes may not get isolated or observed. 

The production process classification type of CE diagram is constructed by stepping 
mentally through the production process. This may be done in one of two ways: by making 
the steps in the process the major ribs of a fishbone diagram, or by superimposing boxes on 
the backbone so that each box is a step in the production process. When the process steps 
are displayed along the backbone as in Case 2 (illustrated in Figure 6-12), the causes are 
depicted on lines (ribs) that feed into either a box or one of the backbone segments that 
connects sequential boxes. The strength of this type of diagram is that it is easy to assemble 
and understand. The weaknesses are that similar causes often appear in more than one 
place and that problems resulting from combinations of more than one factor are difficult to 
illustrate. 
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The -ause enumeration type of CE diagram is generated by listing all possible causes and 
ther rganizing the causes to show their relationships to the aspect of product or process 
quali: that is being examined [Ishikawa 86]. Figure 6-12 shows a simple example. This type 
of cause-and-effect diagram can also be produced in brainstorming sessions where principal 
categories such as manpower, materials (inputs), methods, and machinery (tools) are used 
to prompt probing questions that uncover possible causes. The completed diagram may end 
up looking much like one produced by the dispersion analysis process, but it may not. The 
thought processes used to generate cause enumeration charts are (and should be) more 
free form and less constrained than for dispersion analysis charts. The strength of the cause 
enumeration chart is that enumerating large numbers of likely causes reduces the probability 
of overlooking a major problem area. When done well, this tends to give a more complete 
picture than a chart produced by dispersion analysis. The weakness is that it may be hard to 
relate the twigs of the tree to the end result, which can make the diagram difficult to draw 
and to interpret. 

Whatever method you use for producing cause-and-effect diagrams, be on the lookout for 
diagrams with many major ribs and few twigs. This almost always indicates that either the 
understanding of the process was shallow, or the diagram is too generalized. Use care also 
when a diagram lists only five or six causes. This kind of diagram is usually inadequately 
penetrating, even though its form may be correct. 

Examples 
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Figure 6-12: A Process Classification Cause-and-Effect Diagram 
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Figure 6-13: A Cause Enumeration Cause-and-Effect Diagram 
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Histograms 

Description 
Histograms take measurement data and display the distribution of the observed values. 
They are created by grouping the results of measurement into "cells" and then counting the 
number in each cell. The cells are non-overlapping, equal-width intervals along some 
continuous scale. The heights of the bars in histograms are proportional to the number of 

occurrences within each cell. 

Histograms display frequency counts in ways that make it easy to compare distributions and 
see central tendencies and dispersions. As we have seen in Chapter 5, histograms are 
useful for investigating and summarizing the performance of a process with respect to the 
specification limits that the process or its products must satisfy. 

Histograms can be helpful troubleshooting aids. Comparisons between histograms from 
different subprocesses, operators, vendors, or periods of time often provide insights that 
point to potential causes, trends, or needs for stratification. For example, twin peaks may 
indicate that the data have come from two different sources, each with its own distinct 
characteristics. If so, control charting and other interpretive or predictive applications would 
not be appropriate until the data have been stratified according to source. 

Example 
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Figure 6-14: A Simple Histogram for Continuous Data 
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Guidelines 
When constructing histograms, the cells should be placed immediately adjacent to each 
other (there are no gaps between cells for continuous data). Care should be used in 
selecting both the width and the number of cells. Ott and Schilling offer these guidelines [Ott 
90]: 

1. Make all cells of equal width. (The human mind tends to use the areas 
within cells as the basis for evaluations. Cells that are wider than others 
give disproportionate weight to the values represented by their height.) 

2. Choose the cell boundaries so that they fall halfway between two possible 
observations (i.e., halfway between two adjacent values on the 
measurement scale that is being used). 

3. Do not use too many cells. The number of cells for very large samples 
(e.g., 1000 or more) should be between 13 and 20. When the number of 

. samples is not very large, Sturges' rule of thumb provides the following 
guideline for the relationship between the number of cells c and the sample 
size n: 

c = 1 + 3.3/og10n 

This leads to the table in Figure 6-15. 

Sample size n Number of cells c 

6-11 4 

12-23 5 

24-^6 6 

47-93 7 

94-187 8 

188-376 9 

377-756 10 

757-1519 11 

1520-3053 12 

3054-6135 13 

6136-12,388 14 

12,329-24770 15 

Figure 6-15: The Number of Cells to Use When Plotting Histograms 
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Since the relationship between the number of cells (c), the number of data points (n), and 

the cell width (A) is c = —, compromise will sometimes be needed if the objectives of 
n 

guidelines 2 and 3 above are to be satisfied simultaneously. 

Ishikawa offers an alternative (and simpler) set of guidelines. His recommendations are 
shown in Figure 6-16 [Ishikawa 86]. 

Number of Observations Number of Cells 

under 50 

50-100 

100-250 

over 250 

5-7 

6-10 

7-12 

10-20 

Figure 6-16: Ishikawa's Recommendations for Number of Histogram Cells 
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Bar Charts 

Description 
Bar charts, like histograms, are used to investigate the shape of a data set. They are similar 
in many respects to histograms, but defined on sets of discrete values. Because of this, they 
can display any numerical value, not just counts or relative frequencies. Thus bar charts can 
be used to display data such as the total size, cost, or elapsed time associated with 
individual entities or with sets of products or process steps. 

Because bar charts are defined on discrete scales, cell width is irrelevant, and there are 
always gaps between cells. You are free to use bars of any width you like. Bars of different 
widths, though, should be used only as one of several possible ways to distinguish between 
different data sets (coloring, shading, staggering, or labeling are usually preferable). 

The concepts of average and standard deviation have no meaning for the independent 
variable in bar charts that are defined on discrete scales whose values are not equally 
spaced on the real number line. Medians, modes, and ranges, however, can be used with 
ordinal scales, even though the distance between cells has no meaning. 

Example 
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Figure 6-17: A Bar Chart That Compares Three Discrete Distributions 
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Pareto Charts 

In case you are not familiar with Pareto, he was an Italian 
economist who developed a rule describing wealth distribution. 
It ended up being a fairly useless statistic on its own, but its 
misapplication by 80% of its users has caused more that 20% 
of quality failures in the world. 

Charles A. Barclay, in a posting 
to bit.listserv. quality, 1997 

Description 

Pareto analysis is a process for ranking causes, alternatives, or outcomes to help determine 
which should be pursued as high priority actions or opportunities for improvement. It is a 
useful technique for separating the "vital few" from the "trivial many" [Juran 88]. Pareto 
charts can be used at various stages in a quality improvement program to help select the 
steps to take next. They can also be used to address questions such as, "On which types of 
defect should we concentrate our efforts?" and "What parts of the process are the biggest 
contributors to the problem we are examining?" 

In their simplest forms, Pareto charts are essentially frequency counts or amounts displayed 
in descending order. In more sophisticated analyses, Pareto charts may rank causal factors 
or potential actions in decreasing order of their estimated economic costs or consequences. 

Pareto charts may seem simple, and they are. Nevertheless, the benefits that this kind of 
visual display has over a table of numbers should not be underrated. As those who have 
succeeded in quality improvement can attest, much of the battle lies in getting everyone in a 
group—employees and managers alike—to share a common view of the problems faced 
and the actions needed.25 Pareto charts help to create this common view. 

As simple as Pareto charts are, there are some points that should not be overlooked. In 
particular, the frequencies or other values plotted on a Pareto chart almost always have a 
time period associated with them. This time period should be made explicit, so that viewers 
of the chart can attach correct interpretations to the rankings that are displayed. 

One effective use of Pareto charts is to compare the before and after states related to 
improvement actions. This can give a quick visual appreciation of the effectiveness and 
progress (or lack thereof) related to actions that have been taken. Formal methods exist for 
testing whether or not differences between successive Pareto charts may be due solely to 
chance, so that inappropriate conclusions will not be drawn [Kenett 91]. 

25Everyone "knows" that it is easier and more consequential to reduce a tall bar by half than to 
reduce a short bar to zero. 
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One caution: if the processes that produced the data are not stable, Pareto charts easily 
lead to erroneous conclusions and improper actions. This is especially true when the chart 
shows frequencies of occurrence for different types of problems, some of which may have 
assignable causes. Assignable causes mean uncontrolled variation, and these causes come 
and go. Frequencies associated with assignable causes have little meaning, since there is 
no single distribution that underlies them. When a process is not in statistical control, the 
Pareto chart can easily look radically different from month to month, even when no action is 

taken. 

Example 

Profile of Defects Found in Product XYZ In Its First Two 

Years of Operation (August 1996 through July 1998) 
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Figure 6-18: Example of a Pareto Chart 
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6.5     Technologies and Methodologies for Changing or Improving 
Software Processes 

Statistical quality control is 90% engineering and only 10% 
statistics.26 

H. F. Dodge, as quoted by 
Grant and Leavenworth, 1996 

The methods and technologies in the list below are examples of things that various software 
organizations have found useful for improving the processes they use to develop and 
support software systems. Many of the items in the list are discussed in more detail in a 
survey published by Austin and Paulish [Austin 94]. Each chapter of that report is 
augmented with extensive reference lists to guide further reading on these topics. 

Cleanroom software development. Cleanroom is a software production 
method that originated in the Federal Systems Division of IBM in the late 
1970s and early 1980s. It combines practices of formal specification, 
nonexecution-based program development, incremental development, and 
independent statistical testing. 

Computer aided software engineering (CASE). CASE is a collection of 
methods that use software tools for automating parts of software 
development and support processes. 

Defect prevention process (DPP). This method, sometimes referred to as 
causal analysis, was pioneered by IBM in the 1980s. It assists in 
categorizing defects so that they can be removed systematically and 
avoided in future software development projects. 

Estimation. Estimation is a system of measurements, tools, practices, and 
skills for predicting characteristics of software projects before the project 
begins. Criteria for establishing, operating, and sustaining good estimating 
processes have been published in checklist formats by Park [Park 95, 96b]. 

Formal inspection. Formal inspections were pioneered by Michael Fagan at 
IBM in the 1970s. They provide a structured technique for examining 
software artifacts for defects prior to their use. 

Interdisciplinary group methods (IGMs). This is a collection of methods that 
encompass various forms of planned interaction engaged in by people of 

26Harold Dodge's statement was not intended to belittle the importance of statistics. The point he was 
making is that once statistics such as control charts point to the need to hunt for trouble, 90% of the 
hard work is yet to be done. The real payoffs from statistical quality control lie in the hunt for—and 
elimination of—assignable causes of nonrandom variation and misaligned processes. 
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diverse expertise and functional responsibilities working together as a team 
toward the completion of a software system. Example methods include 
nominal group technique (NGT), joint application design (JAD), groupware, 
group decision support systems (GDSS), quality circles, and concurrent 
engineering. 

ISO 9000 certification. ISO 9000 is a series of standards established by the 
International Standards Organization (ISO) for certifying that an 
organization's practices provide an acceptable level of conformance to 
methods that have been found to produce quality products. 

Personal Software Processsm (PSPsm).27 PSP is a structured set of process 
descriptions, measurements, and methods that can help engineers improve 
their individual performance. It provides forms, guidelines, and procedures 
to assist engineers in estimating and planning their work. One of the basic 
principles of the PSP is, "If you don't put a quality product into testing, you 
won't get a quality product out of test." PSP training focuses on showing 
engineers why this is true and how they can take steps to ensure that their 
product is of high quality before they start to test it [Humphrey 95]. 

Process definition. Process definition uses structured methods to formally 
specify or model software development processes in ways that foster 
communication, training, repeatable operation, and analysis. 

Quality function deployment (QFD). QFD is a family of tabular and graphical 
methods that can be used to help define software functional requirements. 
It emphasizes meeting customer needs, distinguishing results from those of 
competitors, and accounting for implementation difficulty. 

Software Measurement. Software measurement is a collection of methods 
that provides timely quantitative information for defining, tracking, and 
improving project and process performance. 

Software process assessment (SPA). This is a formal method for assessing 
software development organizations to determine the strengths and 
weaknesses. Results typically include structured ratings of process maturity 
and prioritized recommendations for potential areas of improvement. 

Software reliability engineering (SRE). SRE is a collection of methods, 
measurements, and models for statistically estimating and predicting failure 
rates of a software system. It is often used for determining when a product 
is ready for release. 

Total quality management (TQM). This collection of methods and team- 
based activities is oriented towards continuously improving the quality 
culture of an organization and the quality and cost of its products. 

27Personal Software Process and PSP are service marks of Carnegie Mellon University. 
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Discussions of additional technologies and methodologies for improving software process 
can be found in the following publican ns: 

• The Capability Maturity Model for Software [Paulk 93a, 93b, 95] 

• Software Process Evolution at the SEL [Basili 94] 

• Orthogonal Defect Classification [Chillarege 92, 96] 

• People, Organizations and Process Improvement [Perry 94] 
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7      More About Analysis and Use of Process Measures 

This chapter describes additional principles and practices that are important to the 
successful use of measurements for managing and improving software processes. 

7.1     Statistical Inference as a Basis for Action 

You have to know when to argue with data...Data are about 

the past. 

Andy Grove, Intel, 1996 

When using measurements to manage and improve software processes, you will almost 
always be trying to predict or affect future performance. When you have these goals in mind, 
you will invariably find yourself in the realm of analytic studies. Understanding the 
implications of this will help you distinguish between valid and invalid use of measurements. 
It will also help you understand where responsibilities lie for making predictions come true. 

The next two subsections describe the principal differences between enumerative and 
analytic studies and explain what the differences mean in practice. Textbooks in statistics 
have been slow to give the distinctions between these studies the attention they deserve 
[Hahn 93]. Perhaps because of this, the advice you find here may seem unfamiliar and 
excessively conservative. If you are uncomfortable with the recommendations that follow, we 
strongly encourage you to supplement these discussions by reading what Deming, Hahn, 
Meeker, and Wheeler have to say on the topic [Deming 75, Hahn 93, Wheeler 95]. 

Enumerative Studies 
An enumerative study is one in which action will be taken on the materials within the frame 
studied. The frame defines the population that is sampled. Software engineering examples 
of enumerative studies include: 

• inspections of code modules to detect and count existing defects 

• functional or system testing of a software product to ascertain the extent to 
which a product has certain qualities 

• measurement of software size to determine project status or the amount of 
software under configuration control 

• measurement of staff hours expended, so that the results can be used to 
bill customers or track expenditures against budgets 
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In each case, the aim of an enumerative study is descriptive: to determine "how many" as 
opposed to "why so many." An enumerative study answers questions like 

How many defects were found by inspecting the product code? 

How many problem reports have been received from customers? 

How many user manuals do we have on hand? 

How many employees are there in our organization? 

What percent have been trained in object-oriented design methods? 

How large were the last five products we delivered? 

What was the average size of our code inspection teams last year? 

How many staff hours were spent on software rework last month? 

Enumerative studies are not designed to guide process change or predict results that might 
be obtained from different sampling frames, either now or in the future. 

In an enumerative study, it is possible (although perhaps not practical) to reduce errors of 
sampling to arbitrarily low levels. In the limit, in theory, you could measure every element in 
the frame and thus have no sampling error whatsoever.28 In an analytic study, on the other 
hand, it is impossible to compute the risk of making a wrong decision, no matter how many 
data points are obtained [Deming 75]. 

The steps for collecting and analyzing measurement data for an enumerative study are as 
follows [Deming 75, Hahn 93, Park 96a]: 

1. Define the goal of the study. 

2. Define the characteristics or properties of interest. 

3. Explicitly and precisely define the target population about which inferences 
are desired. 

4. Define the frame from which the sample will be taken: 

- Obtain or develop a specific listing or other enumeration of the 
population from which samples will be selected. This population is 
often not identical to the target population. 

- Describe the environment in which the attributes will be measured. 

5. Evaluate the differences between the sampling frame and the target 
population, and identify the possible effects that the differences could have 
on the conclusions of the study. 

28Errors of measurement, however, can still be present, even when every element in the sampling 
frame is included in the sample. Rounding errors, approximations, biases, and errors in reading 
instruments or recording values are just a few examples. 
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6. Define, clearly and precisely, the attribute(s) that will be measured, the 
measures and scales that will be used, and the manner in which 
measurements will be made. 

7. Design and execute a sampling procedure that supplies entities to be 
measured which are appropriately randomized and as representative of 
the target population as possible. 

8. Review and assess the collected data. 

9. Identify the other assumptions that will be used in drawing inferences. This 
includes any assumption of a specific underlying distribution (such as the 
normal, binomial, Poisson, or exponential distribution) and all assumptions 
related to the representativeness of the sampled values. 

10. Ensure that the tools and methods used for analysis are consistent with 
the nature of the data. 

11. Ensure that the users of any inferences drawn from the study are made 
fully aware of the limitations implicit in the assumptions that underlie the 
inferences. 

We refer you to the standard texts on statistics for guidance on using methods such as 
design of experiments, regression analysis, confidence intervals, correlation, multivariate 
analysis, and sampling when collecting and analyzing data for an enumerative study and 
presenting the results. 

Analytic Studies 

Statistical theory as taught in the books is valid and leads to 
operationally verifiable tests and criteria for enumerative 
studies. Not so with an analytic problem, as the conditions of 
the experiment will not be duplicated in the next trial. 
Unfortunately, most problems in industry are analytic. 

W. Edwards Deming, 1980 

No amount of sophistication is going to allay the fact that all 
your knowledge is about the past and all your decisions are 
about the future. 

Ian E. Wilson 

An analytic study differs from an enumerative study in that action will be taken on the 
process (or cause system) that produced the data, not on the materials within the frame 
from which the data came. The aim of an analytic study is to predict or improve the behavior 
of the process in the future. 
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When we conduct an analytic study, we use data from an existing process to predict 
characteristics of future output or performance from either the same process or similar, 
perhaps modified processes. Thus, an analytic study is always concerned with a process, 
not with a population. 

As Deming points out... 

There is a simple criterion by which to distinguish between 
enumerative and analytic studies. A 100 percent sample of the 
frame provides the complete answer to the question posed for 
an enumerative problem, subject of course to the limitation of 
the method of investigation. In contrast, a 100 percent sample 
of a group of patients, or a section of land, or of last week's 
product, industrial or agricultural, is still inconclusive in an 

analytic problem. 

W. Edwards Deming, 1975 

Most analyses of measurements to support process management are analytic studies, and 
much of this guidebook focuses on the analytic aspect of statistical inference. This is not to 
say that enumerative studies are never used. They are often used to provide status reports 
that point to the need for management action. They can also be used to establish 
relationships among existing processes or products. Examples of analytical studies, on the 
other hand, include 

• evaluating software tools, technologies, or methods—for the purpose of 
selecting among them for future use 

• tracking defect discovery rates to predict product release dates 

• evaluating defect discovery profiles to identify focal areas for process 
improvement 

• predicting schedules, costs, or operational reliability 

• using control charts to stabilize and improve software processes or to 
assess process capability 

In analytic studies, investigators are concerned with making inferences or predictions that go 
beyond the sampled data. This is inherently more complex than drawing conclusions from 
enumerative studies. The reason is that analytic studies require the added, often unverifiable 
assumption that the process about which one wishes to make inferences is statistically 
identical to the one from which the sample was selected [Hahn 93]. Whenever this 
assumption does not hold—and it almost never does—it will be impossible to make 
unconditional, quantitative statements about the probabilities or risks associated with future 
outcomes. The best that we can do is to make weak, conditional statements, subject to the 
assurances of subject-matter experts that all significant conditions in the future will be 
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exactly as they were when the samples were obtained. Even these statements are at risk, 
because all too often the samples that they are based on are convenience samples (and 
hence give biased views of the sampling frame), rather than representative samples of 

randomly occurring outcomes. Wheeler puts it this way: 

In an Analytic Study there is no way to define a random 
sample of the future. All data, and all analyses of data, are 
historical. However, in an Analytic Study the inference of 
interest involves prediction, an extrapolation into the future. 
Probability theory offers no help here. All samples become 
"judgment samples,"and there is no way to attach a probability 
to a specific future outcome. 

Donald J. Wheeler, 1995 

Extrapolations to the future always go beyond what statistical methods alone can deliver. In 
addition to statistical methods, extrapolations require a model of the effects that changes will 
have on processes that are studied, together with assurances of the continued existence of 
all conditions not covered by the model (earthquakes, fires, strikes, unforeseen problems, 
changes in suppliers, raw materials, personnel, environments, etc.). Only subject-matter 
experts or people who manage and operate these processes can provide the models and 
make these assurances. 

So whenever you see a confidence, statistical tolerance, or prediction interval that is 
reported in the setting of an analytic study, you should understand that it is at best a lower 
(optimistic) bound on the true uncertainty [Hahn 93]. The interval that expresses the total 
uncertainty is almost assuredly wider, and perhaps much wider, than the statistical intervals 
alone might lead you to believe. Analysts owe it to the users of their studies to make this 
point clear. Unfortunately, in the software world as in other business endeavors, this is 
seldom done. 

The most critical issues in any statistical study are the models used to relate the target 
population to the sampled population and the assumptions associated with the 
representativeness of the data. These models and assumptions are often implicit, and hence 
hidden from both analysts and users of the inferences. Departures from the (implicit) models 
and assumptions are common in practice. This can easily invalidate a formal statistical 
analysis. Failure to state and validate the models and assumptions can produce a false 
sense of security. This, in many instances, is the weakest link in the inference chain [Hahn 
93]. 

Consequently, when performing analytic studies, we are motivated to use statistical methods 
that require as few assumptions as possible. This is one reason for the well-deserved 
popularity of Shewhart's control charts and 3-sigma limits. Another is that control charts also 
address the problem of consistency of conditions over time. When you can demonstrate that 
a process has operated consistently in the past, you are on much sounder ground when you 
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predict that the observed performance will continue into the future. The converse is also 
true. When a process you are examining is not in (or near) statistical control with respect to 
all characteristics of relevance, the applicability of statistical intervals or any other method 
for characterizing the process can be undermined easily by unpredicted trends, shifts, 

cycles, or other variations. Shewhart made this point very clear: 

Sampling theory applies to samples arising under controlled 
conditions. Too much emphasis cannot be laid upon this fact. 
To be able to make accurate predictions from samples, we 
must secure control first just as to make accurate physical 
measurements, we must eliminate constant errors. 

Walter A. Shewhart, 1931 

The steps for collecting and analyzing measurement data for an analytic study are 
essentially the same as for enumerative studies. There are, however, some additional 
aspects that should be addressed. For instance, because we wish to draw conclusions 
about a process that may not even exist at the time of the study, the process that we sample 
is likely to differ in several ways from the process whose performance we seek to predict or 
describe. Moreover, instead of dealing with a set of identifiable units as in an enumerative 
study, we must deal with observations taken in some "representative" manner from an 

existing process. 

What this means is that, in an analytic study, we have both greater opportunity and greater 
responsibility for defining the specific process to be sampled and the way the sampling will 
proceed [Hahn 93]. In conducting analytic studies, you should always aim to consider as 
broad an environment as possible. This means addressing, insofar as possible, the full 
range over which inputs, resources, personnel, and operating conditions might be encoun- 
tered in the future. This is contrary to the traditional advice applied to most scientific investi- 
gations, where one tries to hold all variables constant except those key to the study itself. 

The reason for making an analytic study broad is to narrow the gap between the sampled 
process and the process of interest. This is especially important if there are possible 
interactions between the factors under investigation and any background or contextual 
conditions. 

Another difference between enumerative and analytic studies is that in an enumerative 
study, the probability model that you use to draw inferences is attached to the selection of 
the items in the sample. With such a probability model, you can work out formulas for 
induction and for estimating the uncertainties introduced by using a sample in place of a full 
census. In contrast, in an analytic study, the probability model must apply to the behavior of 
the phenomenon itself [Wheeler 95]. Since you have less control of the behavioral process 
in analytic studies than you do of the sampling process in enumerative studies, the 
assumptions on which your inferences will be based are apt to be less justifiable, and there 
will be more (unknown) uncertainties in the inferences you draw. 
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Analytic studies can also differ from enumerative studies in that the sampling may take place 
over time. When this is the case, it is usually advisable to sample over relatively long 
periods. Observations taken over short periods are less likely to be representative of either 
average performance or long-run variability, unless the process is in strict statistical control. 

The concept of statistical control is frequently important to analytic studies. When a process 
is in statistical control and remains so, the current data can be used to draw inferences 
about the future performance of the process. Data from a process in strict statistical control 
correspond to the commonly used (and at times misused) assumption of independent and 

identically distributed random variables. 

Many analytic studies are dynamic in nature. Here, observed values are collected over a 
period of time, and the results are used to guide changes to an ongoing process. The 
changes may be for the purpose of stabilizing the process (statistical process control), hitting 
a desired target (industrial process control), or improving the process (reducing variability or 
resetting the process to a more profitable target). In these cases, an analytic study may also 

include steps like the following: 

1. Analyze process performance data for stability: 
a. Find out what the process is doing now. 
b. Is the process stable? 
c. If the process is not stable 

- Find all assignable causes. 
- Fix the assignable causes so that they cannot occur again. 

d. If the process is stable, do one of the following: 
- Leave it alone and, if desired, proceed to capability evaluation. 
- Introduce adjustments (or improvements) and track the results. 

2. Once stability is established, determine process capability by comparing 
the performance of the process to the requirements it is supposed to meet. 

3. Use the results of stability and capability analyses to guide and evaluate 
investigations and decisions. 

a. Identify improvement opportunities. 
b. Assess probabilities of future outcomes. 
c. Determine the effectiveness of improvement actions. 

In analytic studies, you should be mindful that statistical inferences are inherently limited to 
the conceptual population of entities that could, at least in theory, have been produced and 
measured at the same time and in the same manner as those in the study. However, as 
Hahn and Meeker point out [Hahn 93] 

...in the overwhelming majority of cases, the investigator's 
prime concern is not with the sampled process but with a 
different one. Any extrapolation of the inferences from the 
sampled process to some other process is generally beyond 
[the analyst's] area of competence. The validity of such an 
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extrapolation needs to be assessed by the subject-matter 
expert. Under these circumstances, determining whether or 
not to use statistical inference methods requires a judgment 
call. If such methods are to be used, it is, moreover, the 
analyst's responsibility to clearly point out their limitations. 

Gerald Hahn and William Meeker, 1993 

In software settings, most studies will be aimed at predicting or guiding events that will take 
place in the future. Hence they will be analytic, not enumerative. Before embarking on any 
data collection or analysis endeavor, you should have a clear understanding of the 
differences between the two types of studies, so that you can design collection activities 
properly and not ask more of data than the data can deliver. Understanding the differences 
between enumerative and analytic studies will also help you explain why some questions 
that software managers ask are impossible to answer with statistical methods alone, and 
why the managers themselves must assume much of the responsibility for ensuring the 

effectiveness of the results. 

7.2     Reviewing and Assessing Collected Data 
Before you begin analyzing measurement data, there are certain criteria that the reported 
values must satisfy if your analyses are to have any merit or credibility. These criteria are 
discussed briefly below. It is important to determine whether or not the reported values 
satisfy the criteria, and to do this very early in the measurement process. You will also avoid 
unnecessary rework and improve the reliability of analyses if you keep these criteria in mind 
when selecting and defining data elements to be measured and the processes you will use 
for collecting, recording, and retaining measurement results. 

Criterion 1: Verified 

Verified data are data that have been examined to assure that they have been collected 
according to specifications and contain no errors. Typically, the examination ascertains that 
the reported values are 

• of the correct type (i.e., numeric, alphanumeric). Often, some data 
elements can be predetermined to be numeric only. Other data elements 
may be limited to the use of certain characters or symbols. The examination 
for verity ascertains that collected and reported data are consistent with 
such specifications. 

• in the correct format. Nearly all data elements will have specified formats. 
Dates, monetary values, counts, product names, process names, product 
IDs, job codes, tools, and priorities are typical examples of data that will 
have specified formats. In these cases, the values that are reported must 
be verified to be in the expected formats. 
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• within specified ranges. Many kinds of collected data can be examined for 
valid ranges of values. Valid ranges can be lists of acceptable names or 
numerical ranges of acceptable dates or values. Impossible values should 
be investigated and corrected before they contaminate a database. 

• complete. Measurement data must contain the essential data elements 
and the associated definitions and contextual information that are needed to 
understand and interpret the data values. For example, each reported value 
should be identified in terms of the entity measured, time of occurrence, 
time of collection, collector, definition, and measurement tools used. 

• arithmetically correct. If the collected data contain values that result from 
arithmetic operations, the examination should verify that the arithmetic 
operations have been performed correctly. 

• internally and externally consistent. Consistency is difficult to determine, 
since it implies that the examiner is sufficiently knowledgeable of previously 
reported data to be able to make this determination. Nevertheless, it is 
important that outlandish or improbable data elements be investigated and 
their correctness verified if erroneous analyses are to be avoided. This may 
involve contacting the source of the data to confirm the correctness of the 
reported values. It may also involve understanding and recording the 
circumstances associated with the occurrence of the value, so that others 
can judge later whether or not the data should be used in an analysis. 

Criterion 2: Synchronous 
You can think of measurements as being synchronous when the values for two or more 
attributes are related with respect to the time of their occurrence. The notion of synchronized 
measurements is particularly important when measuring attributes of a process or when 
using attributes of products and resources to describe the performance of a process. 

Measures that are based on arbitrary time frames are particularly susceptible to problems 
with synchronicity. For example, productivity rates that are computed by comparing outputs 
to inputs over a period of time can easily be misleading if the resources actually expended 
are not appropriately matched to the products produced or the period measured. If the time 
to execute the process is not considered, lags within a process may mean that output 
statistics do not correspond to input statistics (i.e., there is not a valid cause-effect 
relationship). The ratios of outputs to inputs that get used for productivity measures may 
then have little significance. 

One frequently encountered situation where unsynchronized data occur is when effort 
reports are prepared on a monthly basis while size and progress measures are reported at 
weekly intervals. 
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Criterion 3: Self Consistent 

Inconsistencies in the way measurements get defined or collected can lead to flawed 
analyses. Examples include 

• values associated with accounting months that become intermixed or 
confused with values that apply to calendar months 

• effort expenditures reported in terms of calendar months that contain 
differing numbers of working days 

• work breakdown structures,  measurement definitions,  and process 
definitions that change from project to project 

• changes to personnel or job descriptions that cause reclassifications of 
effort categories or tasks performed 

No value should be entered into a database until it is confirmed that its definition is 
consistent with other recorded values of the same type. Self consistency is essentially an 
apples-to-apples issue. If the ground rules for measurements shift with time or from project 
to project, it will be very difficult to compare one measured value to another. This in turn will 
make it difficult to attach significance to observed changes or trends in measured results. 

When data you are recording are inconsistent with data that exist, you should ensure that 
the two types are kept distinct and that the definitions for each are recorded. 

Criterion 4: Valid 

It is a common human weakness to imagine that because a 
metric is intended to measure something, it actually does! 

— source unknown 

At the most basic level, you must be able to demonstrate that the values used to describe an 
attribute truly describe the attribute of interest. For this to be true, the measurements must 
be well defined. In particular, the rules for measuring must be stated explicitly, and this must 
be done in ways such that there are no questions as to what the rules are. Any decisions left 
to local interpretation or to the judgment of data collectors must at worst lead to only imma- 
terial differences in measured values. These points are discussed further in Section 8.3. 

Requiring that measured values match their definitions does not mean that every project 
must use exactly the same definitions. But it does mean that the definitions must be stated 
and recorded explicitly and then communicated explicitly to all who collect or use the 
measurement results. Without adequate and consistent definitions at all points in the 
measurement process, no data can be considered to validly represent what they purport to 
represent. 
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7.3     Assessing Predictive Validity 

When a process is out of control... we cannot begin to define a 
meaningful probability distribution function, f(x), and the notion 
of the mean and variance of the distribution of X vanishes. 
Thus, while we may always calculate statistics from the data 
generated by an out-of-control process, and while these 
statistics will still describe the past data after a fashion, they 
will not be predictive. Such statistics cannot be used to 
estimate parameters of a distribution function because the 
notion of a distribution function for this process is no longer 
well-defined. 

Donald J. Wheeler, 1995 

No universe exists until control is established. 

Walter A. Shewhart, 1939 

We are also concerned with validity in another sense: the validity of a prediction system, es- 
timating process, or model. Here validity can be judged only in the context of the purpose for 
which the measurement results are used. Although validity of this kind may be suggested by 
theory, it can be tested only by empirical means, such as through comparisons of predicted 
results with subsequently observed values. When differences occur, you must determine the 
extent to which the model that is being used differs from the observed process and the 
extent to which the observed process differs from the expected (future) process. Shewhart's 
control charts can be of great help here, since they help guide judgments about the reason- 
ableness of extrapolating observed performance to future scenarios. In particular, if a pro- 
cess is not stable, there is little basis for assuming that tomorrow's results will be like those 
of the observed process. In fact, many people would say that you have not one process 
then, but several. In that case, no extrapolation is likely to be statistically supportable. 

Two things are worth noting here. First, predictive validity cannot be determined solely by 
looking at the data. Claims of predictability always require empirical verification (i.e., does 
the predicting method have a record of success?) [Wheeler 95]. Second, predictive validity 
can be affected strongly by the specific definitions used for a measure. This is especially 
true when decisions of inclusion and exclusion are to be made. For example, how one 
counts code, what code is counted, what staff hours are counted, and what problems or 
defects are counted can have marked effects on the abilities of models that use these data 
as a basis for predicting future outcomes. Checking for predictive validity must include 
careful checking of both the static and operational portions of measurement definitions to 
ensure that the rules followed are fit for the purposes intended. This must then be followed 
up by testing the predictive system to see whether or not the results it predicts are born out 
by subsequent experience. 
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7.4     Control Limits 

Through the use of the scientific method, extended to take 
account of modern statistical concepts, it has been found 
possible to set up limits within which the results of routine 
efforts must lie if they are to be economical. 

Walter A. Shewhart, 1931 

This section outlines the rationale and role of control limits, as developed and explained by 
Shewhart [Shewhart 31]. It discusses the relationship of control limits to the central limit 
theorem and the normal distribution. 

Why 3 Sigma? 

The calculations that show where to place the control limits on 
a chart have their basis in the theory of probability. It would 
nevertheless be wrong to attach any particular figure to the 
probability that a statistical signal for detection of a special 
cause could be wrong, or that the chart could fail to send a 
signal when a special cause exists. The reason is that no 
process, except in artificial demonstrations by use of random 
numbers, is steady, unwavering. 

W. Edwards Deming, 1986 

In his classic texts Economic Control of Quality and Statistical Method from the Viewpoint of 
Quality Control, Shewhart identifies the need to establish efficient methods for detecting the 
presence of variability that is not due simply to chance [Shewhart 31, 39]. He also points out 
that the choice of limits must be taken from empirical evidence—that is, it must be based on 
what works well in practice. 

Shewhart uses the expression X ± tox to characterize tolerance limits for variability due to 

chance causes.29 He argues that, in practice, the method for establishing tolerance limits for 
observed data depends on statistical theory to furnish estimates for the mean X and 
standard deviation ox of the underlying distribution, but requires empirical experience to 

justify the choice of t. Shewhart states that experience indicates that t = 3 provides 
acceptable economic value. By economic he means that the costs resulting from missing 
assigned causes are balanced against the costs of looking for assigned causes when none 

29ln Shewhart's notation, boldface type designates parameters of underlying distributions. Symbols 
for statistics calculated from measurements are printed in standard typefaces. Although it is not as 
apparent as we would like, the symbol ox is printed in boldface type throughout this section. 
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exist (false alarms). In his experience, 3-sigma tolerance limits, when used for control, 
provide an effective criterion for discriminating between common cause variability and 
assignable cause variability, regardless of the underlying distribution. 

Shewhart was guided to his view in part by Tchebycheff's inequality. This inequality says 
that when a process is stable with respect to a measured attribute X, the probability Ptox 

that any particular future observation will lie within the limits X ± tax is greater than 

For f = 3, this says that at least 88.9% of all observations will fall, in the long run, within 
three standard deviations of the mean of the underlying distribution. The probability of false 
alarms will then be less than 0.111. Of course, this still leaves open the problem of obtaining 
good estimates for the mean and the standard deviation—topics that Shewhart and others 
have explored extensively. 

Tchebycheff's inequality is important because it applies for any distribution. With it, there is 
no need to make additional assumptions—such as assuming normally distributed 
variables—which are so difficult to validate in practice. 

When we do know something about the underlying distribution, we can be more precise in 
our statements about the probabilities associated with 3-sigma limits. For example, when a 
distribution has only one mode, when the mode is the same as the arithmetic mean (i.e., the 
expected value), and when the frequencies decline continuously on both sides of the mode, 
then the Camp-Meidell inequality applies. The Camp-Meidell inequality is similar to 
Tchebycheff's, but more exact. It says that the probability that a randomly selected future 
value will lie within the limits X ± tax is greater than 

1- 1 

2.25 r 

This means that when the Camp-Meidell conditions hold, and as long as the underlying 
distribution remains unchanged, the probability of false alarms with 3-sigma limits will be 
less than 0.049. 

If you are willing to assume that your measured values follow a normal distribution, you can 
be even more precise. With normality, the probability P3(Tx that a given value will fall within 

X ± 3crx is 0.9973.30 Therefore, when an attribute that is measured has an observed value 

30Be careful of your interpretations here. Just as with the Tchebycheff and Camp-Meidell inequalities, 
the probabilistic statement applies to randomly selected single observations only. The probability that 
one or more points in a sequence of observations will fall outside the limits is considerably higher. For 
instance, even in a normally distributed process, the chances are greater than 50-50 that at least one 
point in the next 260 will fall outside the 3-sigma limits. 
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of X that is outside the 3-sigma limits, the probability is only 0.0027 that—for this single 
instance alone—this is nor the result of an assignable cause.31 

Note though, that in real-world settings, we can never prove that a distribution is normal. 
Hence the exact probabilities associated with any limits will always be at least somewhat in 
doubt. This, coupled with the robustness of Tchebycheff's inequality and with empirically 
related economic considerations, is the reason Shewhart and many others came to eschew 
probability-based limits and to prefer 3-sigma limits instead. 

To test the consequences of this preference, Shewhart, Wheeler, and others have 
investigated the effectiveness of 3-sigma limits when the underlying distribution is not 
normal [Shewhart 31, Wheeler 92, Burr 67]. Wheeler, for example, graphically illustrates the 
results of simulation studies in which 1000 observations were drawn from each of 6 different 
distributions: uniform, right triangular, normal, Burr, chi-square, and exponential. His 
objective was to determine the extent to which 1-, 2-, and 3-sigma limits spanned the sets of 
data drawn from the six distributions. The sampling plan for each distribution was based on 
a random number generator, so the processes that produced the data were (a priori) in 
statistical control. 

The studies showed that using 3-sigma values for control limits has little practical effect on 
the reliability with which the limits serve to identify uncontrolled variation for the distributions 
that were examined. Wheeler generalizes these results and combines them with other 
experience in the three-part empirical rule shown in Figure 7-1 [Wheeler 92]: 

The Empirical Rule: Given a homogeneous set of data32 

Part 1:      Roughly 60% to 70% of the data will be located within a 
distance of 1 sigma unit on either side of the average. 

Part 2:      Roughly 90% to 98% of the data will be located within a 
distance of 2 sigma units on either side of the average. 

Part 3:      Roughly 99% to 100% of the data will be located within a 
distance of 3 sigma units on either side of the average. 

Figure  7-1:  An Empirical Rule for the Dispersion of Data Produced 
by a Constant System of Chance Causes 

31These computations all assume that you know exactly what X and ax are. If you must estimate X 
and ax from the data, the probabilities will be different. 

32Homogeneous means that the system of chance causes is constant. For data generated by a 
process, this means that the process must be in statistical control. Data from processes that are not in 
statistical control cannot be characterized by any probability distribution. 
__ . _______ 



Part 3 of Wheeler's empirical rule shows why 3-sigma limits result in very few false alarms, 
regardless of the distribution. It also explains why points that fall outside the limits are highly 
likely to have assignable causes. When we couple these empirical observations with the 
information provided by Tchebycheff's inequality and the Camp-Meidell inequality, it is safe 
to say that 3-sigma limits will never cause an excessive rate of false alarms, even when the 
underlying distribution is distinctly nonnormal. 

Thus, any value for a measured attribute that falls outside 3-sigma limits sends a strong 
signal that investigation is warranted. Regardless of the underlying distribution, the event is 
sufficiently unusual to suggest that it has an assignable cause and that the process is not 
stable. This means that 3-sigma limits provide a robust criterion that works effectively for any 
underlying distribution. You do not need to make assumptions of normality to use control 
charts to your advantage.33 

The Central Limit Theorem and the Role of the Normal Distribution 

It is true that some books on the statistical control of quality 
and many training manuals for teaching control charts show a 
graph of the normal curve and proportions of areas 
thereunder. Such tables and charts are misleading and derail 
effective study and use of control charts. 

W. Edwards Deming, 1986 

We raise the issue of normal distributions and the central limit theorem because of an 
apparent misunderstanding by many people that data must be normally distributed to use 
control charts. This is not the case. 

Assumptions of normality come into play when the factors used to adjust statistics for bias 
and compute control chart limits are calculated. For example, the constants A^, D3, and D4 

that are used to compute control limits for X-bar and R charts are based on the assumption 
that the chance causes come from a normal probability distribution.34 Irving Burr, though, 
has examined 26 distributions and shown that this use of the normal probability model does 
not lead to values that are appreciably different from the constants that should be used for 
other distributions [Burr 67]. Hence, using the usual, tabulated constants with nonnormal 
distributions has little affect on the location of the limits or their effectiveness for detecting 
unusual events. 

33lf you reduce your limits to 2-sigma values to make control charts more sensitive, as some people 
do, you lose much of this protection. 

34The tables in the appendices of Wheeler's books show how these factors have been computed 
[Wheeler 92, 95]. 
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Some people mistakenly believe that control charts work only when the Central Limit 
Theorem applies, and many writers have propagated this misunderstanding.35 It is true that 
the theorem is relevant to many situations where data are grouped and averaged. In these 
cases, it is often valid to treat averages of observed values as at least approximately 
normally distributed, regardless of the underlying distribution. However, it is not necessary to 
make this assumption. As we illustrated previously, the normal distribution has no real 
bearing on the effectiveness of 3-sigma limits, because nearly all values will fall within these 
limits for any process that is in statistical control, whatever the distribution. The conservative 
nature of 3-sigma limits makes the Central Limit Theorem irrelevant. It is especially 
important to understand this when dealing with data obtained "one at a time" (i.e., subgroups 
of size one). Sometimes there are mistaken tendencies to forcibly average these data 
somehow, just to appeal to the Central Limit Theorem. Better and more straightforward 
procedures, such as XmR charts, are almost always available. 

Getting Started: Constructing Control Charts with Limited Data 

It is very important to note that the answer to the question of 
how many measurements is in each case limited by the 
assumption that the variable X is controlled. 

Walter A. Shewhart, 1931 

Experience and theory both indicate that a subsample size of 
four is effective in the majority of instances that have come to 
my attention. 

Walter A. Shewhart, 1931 

We have seen that among the factors used to calculate control limits, the number of 
subgroups k and the subgroup size n play an important role. The amount of data you collect 
often determines both the number of subgroups that are possible and the subgroup sizes, so 
you might ask, "How much is enough?" That is, how much data do you need to have before 
you can begin computing control limits? For those who are comfortable with answers 
couched in terms of theory (e.g., coefficients of variation, degrees of freedom, and power 
curves showing the effects of the number and size of subgroups on the quality of the control 
limits), we direct you to Wheeler's advanced text [Wheeler 95]. Other interesting discussions 

35The Central Limit Theorem says that, under very general conditions, when variation results from the 
sum of independent random elements and no small set of elements predominates, the distribution of 
the sum will approach a normal distribution as the number of terms in the sum increases. The 
convergence is often quite rapid. Thus, averages (e.g., X) tend to be normally distributed, regardless 
of the underlying distribution. Ranges, though, always have distinctly nonnormal (skewed) 
distributions. 
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can be found in papers by Proschan and Savage, Hillier, and Quesenberry [Proschan 60, 
Hillier 69, Quesenberry 93].36 The following paragraphs offer some advice that is based on 
the observations found in these references and elsewhere. 

When calculating control limits for testing the stability of processes, it is desirable to base 
the calculations on a minimum of 25 to 30 subgroups if you are using X-bar and R charts, or 
40 to 45 individual values if you are using XmR charts.37 The reason for this is that a large 
number of subgroups reduces the influence that a few extreme values can have on the 
calculated limits. 

Note the emphasis on the word desirable. It is not mandatory to have the suggested 
minimum number of subgroups, especially when getting started. It usually pays to construct 
a run chart and begin plotting tentative, trial limits as soon as possible. You must be 
cautious in interpreting the initial results, though, as the limits you compute with small 
amounts of data may not be especially reliable. 

Shewhart offers this advice with respect to getting started [Shewhart 31]: 

How many subgroups of size four must we have before we are justified in using 
Criterion I [i.e., 3-sigma limits]? That this question is important is at once apparent 
because the expected probability of a statistic falling within the ranges established by 
Criterion I approaches the economic limiting value only as the total number n of 
observations approaches infinity. This difference in expected probability, however, 
even for two subsamples of four is likely less than 0.02 and certainly less than 0.05. 
Hence, the effect in the long run of using Criterion I when the total number of 
observations is small is to indicate lack of control falsely on an average of perhaps 5 
times in 100 trials instead of 3 times in, let us say, 1,000 trials which it would do 
when the total number n is large. In almost every instance we can well afford to take 
this added precaution against overlooking trouble when the total number of 
observations is small. It appears reasonable, therefore, that the criterion [of 3-sigma 
limits] may be used even when we have only two subsamples of size not less than 
four. 

If you use only a few subgroups when you plot charts for averages and range, it is possible 
that an unusually large range within one subgroup can increase the distance between the 
center line and the control limits on the chart for averages, thereby increasing the risk that 
you will miss an out-of-control signal. Keep in mind, though, that even when control limits 
are inflated, values that fall outside the limits remain probable out-of-control signals. 
Postponing the use of available data until you have collected 25 or more subgroups may 
cause you to miss opportunities for early discovery of out-of-control conditions. 

36AII of these analyses assume that the process is in statistical control. 

37The Western Electric handbook is somewhat more liberal in its advice for starting XmR charts. It 
says, "Have 20 or more numbers if possible, but not less than 10 numbers [Western Electric 58]." 
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The advantage of early trial limits is that even when you cannot yet demonstrate stability, 
you can get early indications that assignable causes of variation are present. Concluding 
that a process is stable or nearly so, though, is risky with less than 20 to 30 subgroups. 
Often even more observations are advisable. 

The subgroup size n also affects the computation of control limits. As the subgroup size 
increases, you will need more observations to determine whether or not a process is in 
control. 

Increasing the subgroup size makes the control limits more sensitive to small shifts in the 
process [Montgomery 96]. While this may be desirable in some situations, it is usually more 
important to minimize the amount of variability within the subgroups. This is the principle of 
homogeneously subgrouped data that is so important to rational subgrouping: when we want 
to estimate natural process variability, we try to group the data so that assignable causes 
are more likely to occur between subgroups than within them. Control limits become wider 
and control charts less sensitive to assignable causes when large subgroup sizes lead to 
nonhomogeneous data. Creating rational subgroups that minimize variation within groups 
always takes precedence over issues of subgroup size.38 

Our advice then is the same as that given by Shewhart, Wheeler, Montgomery, and others— 
when limited amounts of data are available, calculate and plot the limits, and seek out the 
assignable causes that the data suggest. Then update the control limits as more data 
become available. 

Revising and Updating Control Limits 

...companies must learn not to just accept a stable or 
controlled process. They must strive to improve their 
processes. Improvement may cause out-of-control conditions 
on the "good" side. If the improvement rate is slow, simply 
recalculate the control limits periodically. If the improvement is 
rapid, use run charts until the improvement rate flattens and 
process stability is again achieved. 

Beauregard, Mikulak, and Olson, 1992 

Revising and updating control charts both involve recalculating the control limits, but for 
different reasons and sometimes in different ways. 

Revising. When you revise control chart limits, you are generally working with an initial set 
of data for which you have calculated tentative control limits, only to find that one or more 
data points fall outside the computed limits. If you believe that the out-of-limit values have 

38We have already seen that it is possible to use a subgroup size as small as n=1 (XmR charts). 
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assignable causes, you may want to set these points aside and compute new limits that are 
not contaminated by the out-of-limit values. The new limits will be closer to the center line, 
which may result in additional points being outside the limits. This process of removing 
points and recalculating can be repeated until all points without known assignable causes 

are within the recalculated limits. 

With X-bar and R charts, subgroups with out-of-limit ranges are the most likely candidates 
for removal. When control limits are revised by omitting certain subgroups or values from the 
computation of the limits, we do not delete the out-of-limit subgroups or points from the 
chart, but merely omit their values when calculating the limits. 

There is an argument that says rather than revise the limits, go to work on removing the 
assignable causes, since you will have to collect new data and compute new limits after the 
assignable causes are removed, in any case. This is food for thought. 

Montgomery offers this additional advice [Montgomery 96]: 

Occasionally, when the initial sample values of X and R are plotted against the trial 
control limits, many points will plot out of control. Clearly, if we arbitrarily drop the 
out-of-control points, we will have an unsatisfactory situation, as few data will remain 
with which we can recompute reliable control limits. We also suspect that this 
approach would ignore much useful information in the data. On the other hand, 
searching for an assignable cause for each out-of-control point is unlikely to be 
successful. We have found that when many of the initial samples plot out of control 
against the trial limits, it is better to concentrate on the pattern formed by these 
points. Such a pattern will almost always exist. Usually, the assignable cause 
associated with the pattern of out-of-control points is fairly easy to identify. Removal 
of this process problem usually results in a major process improvement. 

Updating. We talk about updating control chart limits when we use additional, more recently 
collected data to recompute the limits for an ongoing chart. The need to update can occur if 
you began the control chart with less data that you would have liked (see the previous 
section), if the process is observed to have shifted, or if a deliberate change has been made 
to the process. In these cases, you should recalculate the limits by using the newly collected 
data plus any measurements obtained previously that remain applicable. When the process 
has shifted, though, or when you have made a deliberate change to the process, previously 
collected data may no longer be applicable. 
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Testing for and Sustaining Statistical Control 

It has been observed that a person would seldom if ever be 
justified in concluding that a state of statistical control of a 
given repetitive operation or production process had been 
reached until he had obtained, under presumably the same 
essential conditions, a sequence of not less than twenty-five 
samples of four that satisfied Criterion I [i.e., fall within 3-sigma 
limits]. 

Walter A. Shewhart, 1939 

The fact that an observed set of values for fraction defective 
indicates the product to have been controlled up to the present 
does not prove that we can predict the future course of this 
phenomenon. We always have to say that this can be done 
provided the same essential conditions are maintained, and, of 
course, we never know whether or not they are maintained 
unless we continue the experiment. 

Walter A. Shewhart, 1931 

Statistical control is ephemeral; there must be a running record 
for judging whether the state of statistical control still exists. 

W. Edwards Deming, 1986b 

Although it is possible (and practical) to establish control limits, at least on a trial basis, with 
relatively small amounts of data, you should be cautious about concluding that any process 
is in statistical control. States of statistical control are ideal states, and testing for them is 
much like testing for error-free software. You may be able to show that you have not 
reached the state, but you can never prove or know for certain when you have arrived. 

Nevertheless, the data you have, when plotted on control charts, are infinitely better than no 
data at all. Nothing can change the fact that you will have to bet on your predictions of the 
future performance of your processes. If your control charts signal out-of-control histories, 
you have little basis for extrapolating historical performance to the future. But as you identify 
and permanently eliminate assignable causes of unusual variation, your willingness to rely 
on extrapolation increases. Reliable predictions of process performance and the setting of 
achievable goals then become reasonable possibilities. 

One important corollary to your caution in concluding that a process is stable is that you 
should almost never stop control charting any process, especially one that has had a history 
of going out of control. How else can you be assured that, once stabilized and made 
predictable, the process has not fallen back into its old ways? 
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7.5    The Problem of Insufficient Granularity in Recorded Values 
When measured values of continuous variables have insufficient granularity (i.e., are coarse 
and imprecise), the discreteness that results can mask the underlying process variation. 

Computations for X and sigma can then be 
affected, and individual values that are 
rounded or truncated in the direction of the 
nearest control limit can easily give false 
out-of-control signals. 

There are four main causes of coarse data: 
inadequate measurement instruments, 
imprecise reading of the instruments, 
rounding, and taking measurements at 
intervals that are too short to permit 
detectable variation to occur. When 
measurements are not obtained and 
recorded with sufficient precision to describe 
the underlying variability, digits that contain 
useful information will be lost. If the 
truncation or rounding reduces the precision 
in recorded results to only one or two digits 
that change, the running record of 
measured values will show only a few levels 
of possible outcomes. Fortunately, when 
this problem occurs, it is easy to identify. 

Figure 7-2 shows two sets of values for X 
(the measured process performance) and 
mR (the moving range of X). The left-most 
set of values lists 32 observations as they 
were recorded; the right-most set lists the 
observations after rounding (or as they 
might have been recorded if the 
measurements were insufficiently precise). 
The XmR charts produced from the two sets 
of values are shown in Figures 7-3 and 7-4. 
Notice that the charts do not appear to 
describe the same process. The out-of- 
control points in Figure 7-4 appear solely 
because the data do not correctly reflect the 
underlying process variation. Fi9ure 7"2:  Measured Values as 

Recorded and Subsequently Rounded 

Measured Rounded 

Observation X mR X mR 

1 1.08 — 1.1 — 
2 1.09 .01 1.1 0 

3 1.15 .06 1.2 0.1 

4 1.07 .08 1.0 0.2 

5 1.03 .04 1.0 0 

6 1.08 .05 1.1 0.1 

7 1.1 .02 1.1 0 

8 1.04 .06 1.0 0.1 

9 1.07 .03 1.1 0.1 

10 1.1 .03 1.1 0 

11 1.12 .02 1.1 0 

12 1.09 .03 1.1 0 

13 1.03 .06 1.0 0.1 

14 1.03 .0 1.0 0 

15 1.09 .06 1.1 0.1 

16 1.13 .04 1.1 0 

17 1.02 .11 1.0 0.1 

18 1.04 .02 1.0 0 

19 1.03 .01 1.0 0 

20 1.04 .01 1.0 0 

21 1.14 .1 1.1 0.1 

22 1.07 .07 1.1 0 

23 1.08 .01 1.1 0 

24 1.13 .05 1.2 0.1 

25 1.08 .05 1.1 0.1 

26 1.03 .05 1.0 0.1 

27 1.02 .01 1.0 0 

28 1.04 .02 1.0 0 

29 1.03 .01 1.0 0 

30 1.06 .03 1.1 0.1 

31 1.02 .04 1.0 0.1 

32 1.01 .01 1.0 0 
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Figure 7-3:  XmR Charts Constructed from Values as Originally Recorded 
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Figure 7-4:  XmR Charts Constructed from Rounded Values 

The solution to the problem of insufficient granularity is to ensure that the data used for 
control charts have a resolution that is smaller than the process standard deviation. A good 
rule of thumb for achieving this is to ensure that the set of points that are plotted always take 
on values that range over at least five possible levels of discreteness (the charts in Figure 7- 
4, for example, have stepped appearances because the values in them have only three 
possible levels). Increasing the number of levels can be accomplished by measuring more 
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precisely, by decreasing the frequency of measurement to allow for variation to occur 
between measured values, or by increasing the size of subgroups to allow for more variation 
within a subgroup. 

Never round data to the point where the values that result span less than five attainable 
levels. If this rule must be violated, the data can be plotted in a running record, but they 
should not be used to calculate control limits. 

Additional examples and guidelines related to this subject can be found under the topic of 
"Inadequate Measurement Units" in Wheeler's books [Wheeler 89, 92, 95]. 

7.6     Rational Sampling and Rational Subgrouping 

...it is important to divide all data into rational subgroups in the 
sense that the data belonging to a group are supposed to have 
come from a constant system of chance causes. 

Walter A. Shewhart, 1931 

...emphasis...must be laid upon breaking up the original 
sequence into subgroups of comparatively small size. If this is 
not done, the presence of assignable causes will very often be 
overlooked. 

Walter A. Shewhart, 1931 

Obviously, the ultimate object is not only to detect trouble but 
also to find it, and such discovery naturally involves 
classification. The engineer who is successful in dividing his 
data initially into rational subgroups based upon rational 
hypotheses is therefore inherently better off in the long run 
than the one who is not thus successful. 

Walter A. Shewhart, 1931 

Control charts are founded on the concepts of rational sampling and rational subgrouping. 
These concepts deal with collecting and organizing data so that the questions at issue can 
be answered as reliably and economically as possible. 

Rational Sampling 

The purpose of rational sampling is to obtain and use data that are representative of the 
performance of the process with respect to the issues being studied. Rational sampling is 
concerned with the what, where, when, how, and why of measurements that are plotted and 
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used to compute control limits. The context in which the data are collected will always be the 
largest factor in determining the best ways to analyze the data. 

Rational sampling is not limited to just collecting data. It also involves understanding the 
events associated with the data that have been collected. This understanding will guide you 
when selecting the observations and subgroups that you will use for computing control 
limits. 

For example, when measuring items drawn from a production stream, the items should be 
selected in such a way as to preserve the information they contain about the process. If, for 
instance, outflows of parallel operations are combined, you will not be able to identify which 
of the operations gave rise to a result seen in a sampled item. When identifying the 
operation that caused the result is important, as it is when looking for assignable causes, 
this kind of sampling is not rational. 

Another example occurs when a subset of the data is known to be unrepresentative of the 
process. Rational sampling says that the unrepresentative subset should be removed from 
the computation of control limits. This point can be controversial. The key to resolving the 
controversy lies in the word "unrepresentative." It is certainly wrong to omit a value or set of 
values just because you don't like what you see. There must be a stronger (rational) reason, 
perhaps of the sort, "Oh, yes—on that occasion X (not a normal part of the process) 
happened. We know that is an assignable cause, and we want control limits that will detect 
any similar occurrences." As we pointed out when discussing analytic studies, this is the 
kind of decision that only a subject-matter expert can make. Neither analysts by themselves 
nor any statistical tool can ever tell whether or not a particular set of data should be 
excluded from a study. 

A third example of rational sampling deals with sampling frequency and its relation to the 
rates with which performance can change. Observations that are too far apart in time or 
space can permit substantial shifts, drifts, or changes in variability to occur between 
observations. When this happens, the variability within groups that is used to compute 
control limits will be too large, regardless of how the data are grouped. The process may 
then appear to be in control even though it is not. 

Rational Subgrouping 
Rational subgrouping is concerned with organizing the data so that the control charts 
answer the right questions. 

The first requirement for rational subgroups is that, insofar as possible, subgroups should be 
selected so that the variations within any given subgroup all come from the same system of 
chance causes. This means that, in a practical sense, rational subgroups should consist of 
measured values from small regions of time or space. The purpose of small regions is to 
have sets of data that, within themselves, are relatively homogeneous with respect to 
potential causes of variation. 
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Selecting homogeneous subgroups is important because it is the variation within the 
subgroups that is used to compute the control limits for the process. Minimizing this variation 
makes detecting changes between subgroups easier and more reliable. 

For example, if you look at how control limits are derived from range data, you will see that 
the ranges within subgroups are used to compute an average range across all subgroups. 
This average range is then used to compute the upper and lower control limits. When 
subgroups have been chosen so that variation within groups is small, the control limits will 
be as close to the center line as you can make them. Changes in process performance, 
such as shifts and trends, will then be more easily detected. 

In effect, the variation within subgroups puts limits on the amount of variation that can exist 
between subgroups for the process to be stable. The larger the variation within groups, the 
wider the limits and the less effective the control chart will be in detecting instabilities. 
Another way of thinking about this is to understand that control charts ask the following 
questions: 

• Control charts for averages ask, "Do the subgroup averages vary more than 
they should based on the observed variation within subgroups?" 

• Control charts for ranges ask, "Is the variation within subgroups consistent 
from subgroup to subgroup?" 

In short, the ways in which data are collected and organized determine the behavior you see 
reflected on a control chart. Inappropriate groupings and the wide limits associated with 
them will affect your ability to detect patterns and out-of-limit conditions. Variation within 
subgroups is what determines the sensitivity of the control chart to variation between 
subgroups. One of your principal objectives when choosing subgroups is to make the 
opportunity for variation within groups as small as possible. This means paying attention to 
not only how observations are grouped, but also how and when the data are collected. 

Thus, it is important to consider the potential sources of variation and organize your data 
into subgroups that will help you address the questions you have relative to stability, 
capability, and process improvement. In some cases, there will be a single, natural way to 
group the data. In other cases there may be several ways. When many ways are possible, 
you should select subgroups that will permit the questions of interest to be answered. The 
following example illustrates some of these issues. 
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Example 

The control chart tests the arbitrary or nonrandom 
arrangements of points to determine whether they behave as if 
they were random. If the plotted points indicate nothing but 
randomness, this tends to show that the variable which formed 
the base of the arrangement is not a significant variable. 

On the other hand, if the points indicate that nonrandomness 
has entered the data, this tends to show that the variable on 
which the arrangement is based is actually a significant 
variable. 

Statistical Quality Control Handbook 
[Western Electric 58] 

The software organization of Alphabetronics, Inc. is developing a product consisting of four 
major components. There is a different design team for each major component. The leader 
of the design group has asked the four design teams to count the number of fanouts (calls to 
other modules) as the designs for 
each of their modules are completed. 
The leader suspects that the number 
of fanouts per module might be a 
useful   factor   for   characterizing 
system complexity. In particular, she 
anticipates that there may be a 
relationship between  high fanout 
counts and defects [Card 90]. As a 
result, she wants to keep the number 
of fanouts low. Also, there, are new 
members  in  each  of the design 
teams, and the group leader wants to 
be sure that the designers, as a 
group,   are   producing   consistent 
designs relative to the overall system 
structure. 

The fanout counts for the first 20 
modules designed by each team are 
shown in Figure 7-5.39 The counts 

39This example and the data in it are 
based on a comparable example given 
by Wheeler [Wheeler 92]. 

Module 
Sequence 
Number 

Fanout Counts 
for Team 

A         B        C        D X-bar R 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

14         6        4 
3 7         5         5 
4 5         5         7 
2 6          4         5 
16          7         3 
3 8          6         4 
5 7          6         6 
3 5          4         6 
2 5          9         4 
5         5          6         7 
4 5          6         5 
5 7          8         6 
3 3          7         3 
2 3          6         9 
3 7          4         3 
4 6          6         5 
0         5          5         5 
3         4          6         6 
0         4          4         6 
2          6          5         4 

3.75 
5.00 
5.25 
4.25 
4.25 
5.25 
6.00 
4.50 
5.00 
5.75 
5.00 
6.50 
4.00 
5.00 
4.25 
5.25 
3.75 
4.75 
3.50 
4.25 

5 
4 
3 
4 
6 
5 
2 
3 
7 
2 
2 
3 
4 
7 
4 
2 
5 
3 
6 
4 

Grand Averages 4.76 4.05 

Figure 7-5:  Module Fanout Data 
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were recorded in the sequence in which each team completed its designs. Knowing that the 
sequence is a production sequence is important. If the sequences were recorded in the 
order inspected or reported instead of the order produced, the conclusions about stability 
and assignable causes that could be derived from the data could easily be different and 
perhaps less useful. This is part of what we mean when we say that traceability of values to 
the events that produced them is essential to valid analyses. 

The data in Figure 7-5 have two identifiable sources of variation. There is variation between 
teams, and there is variation over time in the number of fanouts produced by each team. 
The variation within each team over time is shown in the columns labeled A, B, C, and D. 
The design group leader must decide how to group the data so that the sources of variation 
can be isolated and characterized. For purposes of illustration, we will do this in three 
different ways. 

Since the design group leader wants to determine if the overall frequency of fanouts has 
been consistent as the design has been progressing, the counts will first be organized into 
subgroups of size n = 4 consisting of one value for each design team (subgroup 1 contains 
the first module produced by each of the teams, subgroup 2 the second, and so on). The 
averages and ranges for these subgroups are shown in the two right-most columns of Figure 
7-5. 

The design group leader prepared the control charts from the data as follows: 

The grand average is   X = 4.7625 

The average range is   R  = 4.05 

The subgroup size is   n   =4 

From the table in Figure 5-10 (for n = 4): A, = 0.729 and D4 = 2.282. D3 is 
undefined. 

Using the formulas for X-bar and R charts: 

UCL^ = X + A,R = 4.763 + 0.729(4.05,) = 7.715 

CLj = X = 4.763 

LCLj = X - Ar,R = 4.763 - 0.729(4.05; = 1.811 

UCLR = D4R        = 2.282(4.05; = 9.24 

CLR = R = 4.05 

LCLR =D3R       = undefined (does not exist for n = 4) 

The results are shown in Figure 7-6. 
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Average Fanouts per Module Across Teams 
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Figure 7-6:  X-Bar and Range Charts for Module Fanout Data 

The averages and ranges of the subgroups plotted in Figure 7-6 ail fall within the control 

limits, thus meeting the principal requirement for statistical control. 

The design group leader found this interesting, but she was concerned that the average 

fanout count was higher than desired. Also, the average range within subgroups was four, 

suggesting that there was considerable variability across the four teams. 

To examine the difference in performance between teams, the group leader knew that she 

would have to organize the data so that each team became a subgroup. But this meant 

lumping together 20 observations for each team. This raised substantial questions in her 

mind about homogeneity and the rationality for such groupings. If the system of chance 

causes was not constant within each team, there would be no rational basis for inferring that 

the results of this kind of analysis would have any predictive value. . 

To explore the question of homogeneity within teams, the design group leader organized the 

data so that she could plot XmR charts for each team. This organization reduced the size of 

the subgroups to n = 1. The table that resulted is shown in Figure 7-7. 
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Module Team Fanout Counts (X) and Moving Ranges (R) 

Sequence 
Number 

A                       B                       CD 

X R X              R X              R X R 

1 1 — 4             — 6             — 4 — 

2 3 2 7              3 5              1 5 1 

3 4 1 5              2 5              0 7 2 

4 2 2 6               1 4              1 5 2 

5 1 1 6              0 7              3 3 2 

6 3 2 8               2 6              1 4 1 

7 5 2 7               1 6              0 6 2 

8 3 2 5              2 4              2 6 0 

9 2 2 5               0 9              5 4 2 

10 5 3 5               0 6              3 7 3 

11 4 1 5               0 6              0 5 2 

12 5 1 7              2 8              2 6 1 

13 3 2 3              4 7              1 3 3 

14 2 1 3              0 6              1 9 6 

15 3 1 7              4 4              2 3 6 

16 4 1 6               1 6              2 5 2 

17 0 4 5               1 5              1 5 0 

18 3 3 4               1 6              1 6 1 

19 0 3 4               1 4              2 6 0 

20 2 2 6              2 5              1 4 2 

Average 2.75 1.8 5.4           1.35 5.75         1.45 5.15 1.9 

Figure 7-7:  Data Organization of Module Fanout Counts for Constructing XmR Charts 

The control charts that the group leader constructed are shown in Figure 7-8. The values for 
the teams are plotted on common coordinate systems to assist in comparing the results. The 
charts for individual values show no signs of out-of-control conditions for any of the teams. 
The range chart for Team C, however, shows one point that borders on its control limit. This 
point corresponds to the highest point (and biggest jump) on Team C's chart for individual 
values. Since this point is within its control limits and no other moving range appears 
unusual, the group leader saw no strong reason to say that Team C's performance was out 
of control. 
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Team A 

Fanouts/ Module 

Team B Team C Team D 
10 
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10 20 0 

Figure 7-8:  Individuals and Moving Range Charts for the Four Design Teams 

The group leader was interested to see that Figure 7-8 showed the average fanout count for 
Team A's modules to be about half that of the other team's. This reinforced her suspicion 
that there were differences among the processes that the teams were using to design 
software modules. She knew, however, that the evidence so far was inconclusive. 

Since the processes that the teams were using showed no evidence of trends and appeared 
to be in statistical control, the group leader felt that it would be justifiable to treat the data 
within each team as having come from a constant system of chance causes. This meant that 
she could combine the observations into four groups and proceed to the next step— 
comparing the performance of the teams. 

To explore the question of variation in performance across teams, the group leader 
organized the data into four subgroups, as shown in Figure 7-9. Each subgroup is now of 
size n = 20, and the performance within the groups is known to be reasonably 
homogeneous. 

The resulting control charts are shown in Figure 7-10. The average fanout count per module 
is the same as in Figure 7-6, but the limits are much closer to the center lines. This is not 
surprising, since we know that, in general, the standard deviation for the average of n values 
is proportional to 

J_ 
V/7 
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Module Fanout Counts 

Sequence for Team 
Number A B        C D 

1 1 4         6 4 

2 3 7          5 5 

3 4 5          5 7 

4 2 6          4 5 

5 1 6          7 3 

6 3 8          6 4 

7 5 7          6 6 

8 3 5          4 6 

9 2 5          9 4 

10 5 5          6 7 

11 4 5          6 5 

12 5 7          8 6 

13 3 3          7 3 

14 2 3          6 9 

15 3 7          4 3 

16 4 6          6 5 

17 0 5          5 5 

18 3 4          6 6 

19 0 4          4 6 

20 2 6          5 4 

X-Bar 2.75 5.4     5.75 5.15 
R 5 5          5 6 

Figure 7-9:  Data Organization for Measuring Fanout Variation Between Design Teams 
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Figure 7-10: X-Bar and Range Charts for Fanout Variation Between Design Teams 
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Figure 7-10 shows that the average fanout counts for Teams A and C fall outside the control 
limits. This suggests that real differences exist between the teams, despite the performance 
of each team being under statistical control. The group leader would not be justified in 
reaching this conclusion had she not verified that each of the teams had a stable process. 

Strictly speaking, because the sample size is bigger than 10, the group leader should have 
used an S chart rather than a range chart as the basis for assessing variability and 
computing control limits. Just to be safe, we verified her conclusions by making those 
computations. The results, as shown in Figure 7-11, are essentially the same. 

Mean = 1.443 

LCL = 0.735 

Design Team 

Figure 7-11: X-Bar and S Charts for Fanout Variation Between Design Teams 

What is going on here? The range charts in Figures 7-6 and 7-10 provide a clue, but first 
let's review the questions the control charts are answering compared to the questions the 
design leader was asking. 

The subgrouping of data shown in Figure 7-5 was aimed at examining the variation in fanout 
counts as the design progressed (i.e., over time). This subgrouping assumed that, at any 
point in the sequence, the variability across teams would be less than the variability over 
time. When this assumption is true, it is rational to use the variations observed among the 
four teams to compute control limits that describe the inherent variability in the average 
fanout count for groups of four at any point in time. These control limits can then be used to 
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examine the stability of the overall process. Thus, the charts resulting from the organization 
of data in Figure 7-5 examine these questions: 

The X-bar chart:       "Have there been detectable differences in the average 
fanout counts as the design has progressed?" 

The range chart:       "Has the team-to-team variability in fanout counts been 
consistent across the 20 groups of modules? 

This organization of the data did not ask the question "Are there detectable differences in 
the fanout counts between the respective design teams?" In fact, there were implicit 
assumptions that the variation would be less across teams than it would be over time and 
that the performance of each team's design process would be evolving at the same rate. 

The second organization of the data (Figure 7-7) made fewer assumptions. It addressed the 
problem of subgroup homogeneity by using XmR charts individually for each of the four 
teams. This data organization asked questions similar to the first organization, but aimed at 
the design teams individually. Because the subgroup size was n = 1, two-point moving 
ranges were used to estimate sigma and set the control limits. The questions that this 
organization of data asked were 

The X-bar charts:      "Have there been detectable differences within any team's 
fanout counts as the design has progressed?" 

The moving range     "Has the variability in fanout counts for each of the teams 
charts: been consistent across their 20 modules? 

The third organization of the data used the fanout counts for each team's 20 modules as the 
subgroups (n = 20). The justification for doing this was that the XmR charts showed that 
each team's results appeared to come from a process with a constant system of chance 
causes. When the performance is consistent within teams (i.e., is in statistical control), the 
average of the variations in the teams (the subgroups) can be used to set limits for 
comparing the differences in performance among the teams. The questions being 
addressed with this data organization were 

The X-bar chart:       "Were there detectable differences in the module fanout 
counts among the teams? 

The range chart:    '  "Was the variability in fanout counts consistent from team 
to team?" 

The X-bar chart in Figure 7-10 shows the average performance of each of the four design 
teams, and the range chart shows the respective ranges of performance within each team. 
Although the ranges are remarkably consistent across the teams, the chart for averages (X- 
bar) shows significant differences among the teams' average performance. When significant 
differences exist, there may be assignable causes. Whether or not Team As process leads 
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to an unusually small number of fanouts or Team C's to an unusually large number are 
things to be investigated. 

If the design group leader wants to obtain lower fanout counts from Teams B, C, and D, she 
must now determine the process changes that will be needed for the three teams to achieve 
results comparable to those of Team A. 

Notice that sequence was not an issue in the third analysis. Thus, in a sense, this analysis 
does not illustrate a classical use of control charts. Instead, it effectively uses a technique 
called analysis of variance. The difference is that before the team leader performed her 
analysis, she verified that one of the necessary conditions—the existence of a single 
distribution within each team—appeared to hold. In ordinary analysis of variance, this is 
often just assumed. Now that you have seen how easy it is for data produced by processes 
to be corrupted by assignable causes, you can appreciate how easy it is for simple analyses 
of variance to lead you astray in dynamic environments like the ones that we often find in 
analytic studies. 

The three approaches in this example show that there can be several ways to organize data 
into subgroups, and that each way makes different assumptions and leads to answering 
different questions. Clearly, the choice of subgroups determines what you can learn from the 
data. In general, the sources of variation of least concern (those closest to the inherent 
variation in the process) should be represented by differences within subgroups. The 
sources of variation that you wish to detect, on the other hand, should be represented by 
differences between the subgroups. Rational subgrouping keeps the variation within 
subgroups small, so that the tightest possible limits can be set. Narrow limits are what make 
control charts sensitive to the nonrandom variations you want to detect. Rational 
subgrouping enables you to set narrow limits without an uneconomical number of false 
alarms. 

Thus, rational subgrouping is about common sense and efficiency in the use of data 
obtained from a process. The frequency of sampling should reflect both the nature of the 
process and the frequency with which actions or decisions are needed. If multiple 
measurements are collected at the same time and there are no structural reasons for the 
values to be different, they may be grouped together and used to estimate the inherent 
process variability. If only single values are collected, subgroups of size one and their 
associated moving ranges are likely to be most appropriate. When only limited amounts of 
data are available, you should look first to plotting a running record of the individual values. 
Automatically subgrouping limited amounts of data is not a good practice. 
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7.7    Aggregation and Decomposition of Process Performance 
Data 

When analyzing process performance data, you must be constantly concerned that you 
have identified all sources of variation in the process. If a conscious effort is not made to 
account for the potential sources of variation, you may inadvertently hide or obscure 
variation that will help you improve the process. Even worse, you may mislead yourself and 

others with a faulty analysis. 

When data are aggregated, you will be particularly susceptible to overlooked or hidden 
sources of variation. Overly aggregated data come about in many ways, but the most 

common causes are 

• inadequately formulated operational definitions of product and process 
measures 

• inadequate description and recording of context information 

• lack of traceability from data back to the context from whence it originated 

Overly aggregated data easily lead to 

• working with data whose elements are combinations (mixtures) of values 
from nonhomogeneous sources 

• difficulty in identifying instabilities in process performance 

• difficulty in tracking instabilities to assignable causes 

• using results from unstable processes to draw inferences or make 
predictions about capability or performance 

We addressed issues associated with the causes and avoidance of overly aggregated data 
in Chapters 3 and 4. The example that follows shows some of the advantages that accrue 
when full traceability is present, so that data can be disaggregated and used to probe the 
underlying structure of a process. The example uses orthogonal attribute definitions to help 
identify sources of variation and provide insights to potential process improvement 
[Chillarege 92, 96]. 

Example 
The top two rows in Figure 7-12 show the numbers of defects found during design 
inspections for 21 components of a new system. Each component is believed to possess the 
same area of opportunity in terms of the potential for defects to occur and be found. 

XmR charts that were constructed for the total number of defects found in each component 
show no signs of instability from component to component (see Figure 7-13). Based on this 
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Component 1 2 3 4 5 6 7      8 9 10 11   12   13   14   15 16 17 18 19 20 21 Totals 
Defects 12 16 18 32 22 16 23   35 15 27 16   25  20   26  20 23 23 36 22 27 17 471 

Defect Type Number of Defects per Type per Component 
Function 3 5 4 4 4 3 3    20 4 11 2     3     3    5     3 7 4 5    5 15   2 115 
Interface 2 2 4 4 3 4 2     3 3 4 2     3     5    3     3 3 2 16   6 2    4 80 
Timing 1 1 0 1 1 0 2      1 0 0 2     0     111 1 1 0     1 0    0 15 

Algorithm 0 0 1 14 2 0 0      0 0 0 0     15    2     7 6 5 1     2 0    1 47 
Checking 1 1 5 1 7 1 1      2 0 1 6     3     1    12    1 0 2 4    3 5    2 59 

Assignment 0 2 0 4 1 2 1      3 2 3 2     8     10     2 1 2 1     0 1     1 37 
Build/Pkg. 3 1 1 2 1 0 0      4 3 6 10     2     11 1 3 2    2 2    1 37 

Document 2 4 3 2 3 6 14    2 3 2 17    2    2    2 4 4 7    3 2    6 81 

Figure 7-12: A Summary of Defect Types Found During Component Inspections 
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Figure 7-13: XmR Charts for the Total Number of Defects Found in Component Inspections 

cursory examination, it would appear that the combined process of design and inspection 
was stable and under control. 

The next activity that the organization had planned was to classify the defects according to 
the types listed in Figure 7-12 and determine if the number of defects found, by type, were 
within the target limits obtained from previous experience [Chillarege 92, Bhandari 93]. The 
numbers of defects of each type found in each component are shown in the bottom eight 
rows of Figure 7-12. 
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Before embarking on this activity, it is important to know whether or not the component 
design process is in control for the different types of defects found. Therefore, XmR charts 
were constructed by plotting the number of defects for each type in the sequence in which 
the components were completed. The control charts for these individual values are shown in 
Figure 7-14. 

Defect Type = Function Defects Type = Interface 
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Figure 7-14: Control Charts for Individual Defect Types 
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Here we see that the disaggregated data for the numbers of defects found suggests 
unstable conditions in seven of the eight control charts. Several points are out of bounds, 
and one chart shows a run of eight points below the center line. (There were no signs of 
instability in the respective moving range charts.) The charts for individuals show that as 
many as eight different components may have been associated with the instabilities. This 
suggests that reasons for the unusual variations be sought. If reasons are found, actions 
can be taken to fix the problems that caused the unusual variations. 

Note that when assignable causes are found and the corresponding points are removed 
from the charts, the control limits will become narrower, and the performance of the process 
will be more predictable for each defect type. The organization will then be in a position to 
make changes in a controlled fashion or to project future performance, if it desires. 

This example shows that a single control chart of aggregated data, as in Figure 7-13, may 
be ineffective for identifying instabilities or for pointing to potential opportunities for 
improvement. As Wheeler and Chambers point out when discussing a similar example, the 
more sources of nonconformity that are combined on one chart, the greater the likelihood 
that the chart will appear to be in control [Wheeler 92]. Thus, although charts such as the 
one in Figure 7-13 may provide a useful record of what is happening, they are not very 
useful for improving a process. Due to the smoothing produced by aggregating the effects of 
several sources of error, control charts for the total number of defects can easily fail to 
identify both the timing of instabilities and the potential sources of assignable causes. 

7.8     World-Class Quality 

The failure to operate a process on target with minimum 
variance will inevitably result in dramatic increases in the 
Average Loss Per Unit of Production. Such losses may be 
severe, and they are always unnecessary. 

Conformance to Requirements, Zero Defects, Six-Sigma 
Quality, Cost of Quality and all other specification-based 
nostrums miss this point. World class quality has been defined 
by "on target with minimum variance" for the past thirty years! 
The sooner one wakes up to this fact of life, the sooner one 
can begin to compete. 

Donald J. Wheeler, 1995 
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The most important use of a loss function is to help us to 
change from a world of specifications (meet specifications) to 
continual reduction of variation about the target through 
improvement of processes. 

W. Edwards Deming, 1993 

I know not why this works, other than the mathematics. 

Genichi Taguchi (Apocryphal?) 

In reading about the concept of process capability as we introduced it in Chapter 5, it would 
be easy to conclude, "Oh, that doesn't apply to me! I work on software, and we never have 

specification limits." 

While it may be true that few software processes have explicit specification limits, it is 
always true that excessive variability and off-target performance are inefficient and costly. 
The man most responsible for bringing this point to the world's attention is Genichi Taguchi. 
The situation he pictured for the classical concept of process capability is illustrated in 
Figure 7-15. The figure shows the model implicitly used in industry when products are 
inspected and defective (nonconforming) items are discarded. 

Loss 

Some Large Value 

Lower 
Specification 

Limit 

Target 
Value 

Upper 
Specification 

Limit 

Figure 7-15: The Loss Function Associated With the Classical Concept of Process 
Capability 

One of the characteristics that Taguchi observed in organizations that operate with this 
model is that processes that operate within specification limits get neglected. Taguchi 
recognized that this was inconsistent with the goal of continuous process improvement. He 
proposed an alternative  model that recognized that all  variation  has economic 
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consequences, and that large variations are more detrimental than small variations. His 
model, in its simplest form, looks like Figure 7-16. 

For both mathematical and practical reasons, Taguchi's model is often well approximated by 
a parabola, at least in the vicinity of the target value. This leads easily to analytic methods 
that, in conjunction with information about the distribution of outcomes, can be used to 
estimate the costs of being off target. 

Loss 

Target 
Value 

Figure 7-16: A Simple Loss Function Showing Taguchi's Concept of Capability 

While the exact amounts of loss associated with being off target by given distances can be 
important, they need not concern us here. What is important, though, is to understand that 
any variability that exists causes deviations from the target, that each deviation has a cost, 
and that large deviations cost more than small deviations. All this is just as true in software 
settings as it is in manufacturing and service environments. 

So, when you address issues of process performance that involve target values, do not 
conclude that the concept of capability does not apply just because no limits have been 
given to define an acceptable product or performance. Instead, we suggest that you picture 
Taguchi's model and adopt the view that 

world-class quality = on target with minimum variability 

When you adopt this view, the histograms you build with data from stable processes will give 
you much of the information that you need for assessing where you stand with respect to 
process quality and what the benefits would be from improving it. What's more, the attention 
of your organization will remain focused appropriately on opportunities for continuing to 
improve the process through additional reductions in variability. 
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8      Principles of Successful Process Measurement 

This chapter lists some basic principles of software process measurement that we have 
assembled from the experiences, successes, and failures reported by numerous software 
managers and practitioners. These principles provide foundations for establishing guidelines 
and practices to be used when applying measures to software process management. 

8.1     Process Measures Are Driven by Business Goals 
Experience has taught us that we must identify the critical factors which determine whether 
or not we will be successful in meeting our goals. These critical factors often take the form of 
issues or problems, each representing a level of risk that jeopardizes our ability to meet our 
goals, responsibilities, or commitments. One way of identifying these issues is to pose 
questions relevant to the tasks or activities we must undertake to achieve our goals. The 
questions center around the entities that are involved in the tasks or activities that are 
performed. The nature of the questions depends on the tasks themselves, and our own 
experience and knowledge of tasks and activities provide the basis for the questions. The 
ability to pose questions that identify critical factors and issues is a function of what we 
understand or picture to be the tasks, resources, and products required to meet our goals. 
We refer to this picture as a mental model. 

The knowledge and experience that you have acquired from working with a process and its 
constituent parts are the basis for such mental models. These mental models evolve and 
become fleshed out as you probe and make explicit your understanding of the processes 
you use and the questions you have about them. Your mental models are the engines that 
generate the insights that guide you toward useful measures and toward useful 
interpretations of measurement results. 

Although mental models are abstractions, they are far from artificialities. We all use mental 
models every day to provide contexts and frameworks for translating observations into 
conclusions and actions. These personal mental models are seldom stated in explicit 
ways—but they always exist, if only in our minds. The models are derived from our personal 
experiences, and they exist even if we don't think consciously about them. They provide the 
context for interpreting and acting on the data we see in everyday life. 

For example, Figure 8-1 illustrates one organization's perception of relations that exist 
between the introduction of software faults and where they are found. It shows an example 
of a mental model of a process that provides a basis for identifying measurable attributes.40 

40This figure was given to us by Daniel J. Paulish of Siemens Corporation. 
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Figure 8-1:  Process Models Help Us Construct Indicators—Fault-Stream Analysis 

You may also have occasion to measure or characterize entities that lie outside your 
process models. For example, you should always keep in mind that your processes operate 
in environments that contribute to or detract from the processes' prospects for meeting your 
goals. Quantitative information about significant attributes of these environments will help 
you interpret information gathered from the processes that operate within them. 

8.2     Process Measures Are Derived from the Software Process 
A project development manager or process manager can measure only those products, 
processes, and resources that are being planned for or used by a project. Furthermore, the 
procedures used to capture data about these entities are largely determined by the tools, 
procedures, and methods that are in practice and available. In short, the developer's 
software process determines which attributes can be measured and how such 
measurements are to be made. Therefore, when establishing an overall measurement 
process, you must consider both the proposed and actual software processes of the 
developer. 

It is also important to recognize that, in general, there may be significant differences 
between the software processes that are desired or envisioned and the ones that get 
documented, interpreted, or executed. These differences are frequently due to deficiencies 
in the description, comprehension, traceability, and interpretation of the process. There 
follows, therefore, a need to fully understand the software process (and possess an 
awareness of the factors that may affect the process) that is in direct proportion to the detail 
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of the measurement requirement. This understanding is required during the planning and 

analysis stages of the measurement process. 

8.3     Effective Measurement Requires Clearly Stated Operational 
Definitions 

Any physical measurement is the result of applying an 
operational procedure. 

W. Edwards Deming, 1986 

If you change the rule..., you come up with a new number. 

W. Edwards Deming, 1993 

A measurement process is based on collecting and analyzing well-defined data. All too often 
those who have the task of collecting measurement data or analyzing reported data are not 
given sufficiently complete specifications or descriptions of the data. As a consequence, 
assumptions are made that lead to incorrect collection or analyses. 

Three criteria guide us in understanding the meaning of well-defined data [Park 92]: 

• communication. Will the methods used to define measures or describe 
values allow others to know precisely what has been measured and what 
has been included in and excluded from aggregated results? Moreover, will 
every user of the data know how the data were collected, so that they can 
interpret the results correctly? 

• repeatability. Would someone else be able to repeat the measurements 
and get the same results? 

• traceability. Are the origins of the data identified in terms of time, 
sequence, activity, product, status, environment, measurement tools used, 
and collecting agent? 

Note that these criteria are also crucial in supporting other measurement principles. Letting 
others know clearly what attributes have been measured and how the measurements were 
made is critical to both objective communication and traceability. Repeatability addresses 
the need for consistent interpretation over time and across all parts of the organization. 
Traceability supports the need for contextual information to guide interpretations and 
analyses. 
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8.4     Different People Have Differing Measurement Views and 
Needs 

Different organizational entities (e.g., corporate, division, program, staff, project, or 
functional group) have different process management issues, perspectives, and interests, 
even when the same overall goals are shared among these entities. This often results in 
differing measurement needs and priorities. To the extent that these entities participate in 
the software measurement process, their measurement needs must be addressed. 

In an operational sense, this means that each organizational entity must express its own 
measurement needs in terms of the attributes of the products, processes, and resources 
involved. Those responsible for planning and implementing a measurement process must be 
responsive to these needs while at the same time considering the capability and cost of 
collecting the requested data. The end result should be an integrated set of measurement 
requirements that balances the needs of the various organizational entities against the cost 
and capability of collecting the requested data. 

8.5     Measurement Results Must Be Examined in the Context of 
the Processes and Environments That Produce Them 

Analysis and interpretation of measurement data must be done within the context of other 
information about the process or product. Measurement data by themselves are neither bad 
news nor good news. A report indicating zero defects in the two months following product 
release may be very good news (if the product is being used by a large number of 
customers) or very bad news (if there are few to zero customers using the product). 
Measurement results must be examined in the context of other information about the 
product or process to determine whether action is required and what action to take. 
Unexpected measurement results generally require additional information to properly assess 
the meaning of the measurement. 

8.6     Process Measurement Spans the Full Life Cycle 
The measurement approaches and operational guidelines outlined in this guidebook apply 
throughout the entire software process. They also apply across projects and life cycles. 
Since process management and improvement are predicated on continual measurement of 
the process, it is important that all parts of the life-cycle process be subjected to process 
management scrutiny. 

For example, activities associated with planning and estimating depend on the nature and 
proper execution of the planned software process. Inconsistent execution of the software 
process will lead to inconsistent and unreliable estimates for future projects. Measurements 
that help stabilize process performance will make estimates more reliable. 
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Conversely, estimates set the expectations that become embodied in the plan. Development 
activities are then measured against the plan and compared with process performance to 
determine if the process is under control and achieving its goals. Unstable estimating 
practices that are unreliable in predicting future performance may do more harm than good. 
The implication here is that estimating processes should be measured and examined for 
stability and improvement opportunities just like any other process. 

Similar comments apply at every stage in the software life cycle. For example, tracking the 
process and product during post-deployment support periods often provides the data 
needed to improve those activities as well. 

8.7 Retaining Data Provides Factual Baselines for Future 
Analyses 

Historical records of process and product measurements must be retained so they will be 
available for identifying trends and establishing baselines for future planning and process 
improvements. When responsibilities for product planning, development, or post-deployment 
support change from one project to another, the sponsoring organization must assume the 
responsibility of establishing and sustaining a "corporate memory"—a repository containing 
pertinent project, process, resource, and product data. While this need not be (and probably 
should not be) a single, monolithic database, there should be a clear "chain of command" 
back to a person or office that is accountable for ensuring that a well-coordinated corporate 
memory is established and maintained. 

8.8 Measures Are the Basis for Objective Communication 
It is often said that a "picture is worth a thousand words." In measurement for software 
process management and improvement, this might be restated as "a valid measurement is 
worth a thousand guesses." Well-supported, objective numbers and facts drive out 
unsubstantiated, subjective opinions. Clearly understood factual data facilitate correct 
analysis and help ensure that there is agreement on what is happening as well as what 
should be happening in a software process. Software measurements can thus form the 
basis of clear, objective communication, not only within the software developing 
organization, but with customers as well. 

8.9     Aggregating and Comparing Data Within and Across Projects 
Requires Care and Planning 

Most data for software process management and improvement will come from individual 
software projects or the activities within them. These data will be specific to the particular 
software process in use, both in terms of their definition and the context in which the 
measured results are to be interpreted. 
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Since process management often involves collecting, analyzing, and comparing data from 
multiple projects and products, care must be used when aggregating or combining data as 
well as when comparing projects or products, plotting trends, or assessing the benefits of 
process improvements. When comparing or aggregating, the implicit assumption is that "all 
other things are equal." Differences among processes can easily invalidate an analysis or 
require changes in either the analysis or the way data are collected and aggregated. These 
problems can sometimes be avoided or alleviated by using data with common definitions 
from projects that used similar processes and measurement practices. This is not always 
possible, since the level of analysis may be more detailed than the level of commonality 

permits. 

When comparable data are not obtainable directly, mathematical modeling can sometimes 
be used to normalize measured results. If models can be used to account for the factors that 
are different, it may then be valid to compare results obtained across projects and over time. 
The soundest mathematical models are those that have been validated by well-documented 
empirical evidence. The models must accommodate and account for the contextual 
information that describes the similarities and differences among the processes and 
environments where the data were collected. Thus, process management often requires 
collecting additional data beyond what is typically needed for project management. The 
purpose of this information is to enable valid normalizations, comparisons, aggregations, 
and analyses to be made. 

8.10   Structured Measurement Processes Improve Data Reliability 
Successful process management requires that measurements of processes, products, and 
resources be based on disciplined and controlled measurement processes. A successful 
measurement process includes not only clearly defined data, but also operational 
methodologies for relating process issues to the required measures and a defined process 
for collecting and analyzing measurement results. Making effective decisions to control, 
stabilize, predict, and improve software process performance requires confidence and 
assurance in the data. This means that measurement data must truly represent the process, 
relate to the issues at hand, and be analyzed with techniques that are consistent with the 
nature of the data. 
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9       Epilogue 

We have used quotations throughout this guidebook to highlight important points and to give 
a sense of the importance that knowledgeable people attach to the concepts on which 
measurement for process management and improvement is founded. It seems fitting, then 
to close with a quotation like the one below. Nothing that we could write could better 
summarize the message of interplay between context knowledge and statistical methods 

that this guidebook has been trying to convey. 

Every process and every product is maintained and improved 
by those who combine some underlying theory with some 
practical experience. More than that, they call upon an 
amazing backlog of ingenuity and know-how to amplify and 
support that theory. New-product ramrods are real "pioneers"; 
they also recognize the importance of their initiative and 
intuition and enjoy the dependence resting on their know-how. 
However, as scientific theory and background knowledge 
increase, dependence on native skill and initiative often 
decreases. An expert can determine just by listening that an 
automobile engine is in need of repair.  Similarly,  an 
experienced production man can often recognize a recurring 
malfunction  by characteristic physical manifestations. 
However, problems become more complicated. Although 
familiarity with scientific advances will sometimes be all that is 
needed to solve even complicated problems—whether for 
maintenance or for improvement, many important changes and 
problems cannot be recognized by simple observation and 
initiative no matter how competent the scientist. It should be 
understood that no process is so simple that data from it will 
not give added insight into its behavior. The typical standard 
production process has unrecognized complex behaviors 
which can be thoroughly understood only by studying data 
from the product it produces. The "pioneer" who accepts and 
learns methods of scientific investigation to support technical 
advances in knowledge can be an exceptionally able citizen in 
an area of expertise. Methods in this book can be a boon to 
such pioneers in their old age. 

Ellis R. Ott and Edward G. Schilling, 1990 
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Appendix A: Locating Key Information 

This appendix provides references and pointers to help you locate key topics and examples. 

Ideas and Examples for Measurable Entities and Attributes 

Page 
Number 

26 

Figure 
Number 

1-1 

2-6 

Figure Title 

Business Goals, Project and Process 
Issues, and Related Measurable Attributes 

Examples of Entities and Attributes that 
Can Be Measured to Address Process 
Compliance 

31 2-12 Examples of Indicators for Business 
Operating Systems 

31 2-13 Sources of Early Indicators for Customer 
Satisfaction, Flexibility, and Productivity 

36 3-3 A Generic Process Model 

36 3-4 A Simple Process Model for Defect 
Tracking 

43 3-7 Measurable Entities in a Software Process 

44 3-8 Measurable Attributes Associated with 
Software Process Entities 

123 6-3 Compliance Issues and Potential Sources 
of Noncompliance 

125 6-5 Inputs that Affect Process Performance 

CMU/SEI-97-HB-003 195 



Pictorial Models of Process Management and Measurement 

Page 
Number 

Figure 
Number 

Figure Title 

8 1-3 The Four Key Responsibilities of Process 
Management 

11 1-4: The Relationship Between Process Man- 
agement and Project Management 

12 1-5 Measurement Activities and Their 
Relationship to the Key Responsibilities of 
Process Management 

33 3-1 Measurement Planning and the Key 
Responsibilities of Process Management 

118 6-2 The Actions that Follow Evaluations of 
Process Performance 

Procedures, Processes, and Approaches 

Page 
Number 

Topic 

20 Questions to answer if performance data are to be 
interpreted correctly 

34-35 Steps for identifying process issues 

40-44 Selecting entities and attributes for measurement 

45 Templates for structuring measurement goals 

52 Questions to address when analyzing existing measures 
and measurement practices 

53-54 Things to do before writing a measurement plan 

55 Checklist for preparing a measurement action plan 
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Procedures, Processes, and Approaches (continued) 

Page Topic 
Number 

59 Principal tasks associated with collecting and retaining 
data 

63-65       Database planning issues 

65-66       Database management issues 

75 Control chart structure 

79 Detecting instabilities and out-of-control situations 
(four tests) 

81-83       The stability investigation process (10 steps) 

85 Procedure for calculating control limits for X-bar and R 
charts 

100 Conditions for Poisson distributions (six tests) 

115 Procedure for assessing the capability of a stable 
process (flowchart) 

118 The   actions   that  follow   evaluations   of   process 
performance (flowchart) 

128-143 Analytic tools (examples) 

144-145 Examples of improvement methods and technologies 

148-149 Steps for collecting and analyzing measurement data 

153 Additional steps for conducting an analytic study 

200-202 Measurement planning template  
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Appendix B: Template for a Measurement Action Plan 

This appendix provides a template for measurement action plans that is taken from Goal- 
Driven Software Measurement—A Guidebook [Park 96a]. You may find this template useful 
when identifying and structuring the key issues that you want your measurement plans to 
address. On the other hand, you (or your organization) may have alternative formats that 
you prefer. If so, by all means use any reasonable template that works well for you in your 
environment. But whatever your plan, be sure to address the issues that appear in this 
template. Each has been identified from experience accumulated in implementing action 
plans in real-world, people-centered environments. 

CMU/SEI-97-HB-003 199 



Measurement Implementation Plan (a Template) 

1. Objective 
List the principal objective(s) of this measurement implementation effort. Identify the 
measures to be implemented, explain why they are important to your organization, 
and summarize the expected outcomes. 

2. Description 
Outline the origins of the plan, describe the goals and scope of the activities 
encompassed, and explain how the measures and efforts in the plan relate to other 
efforts and activities. The subsections that provide this information are described 
below. 

Background 

Give a brief history of the events that have led to or motivated this plan. Describe the 
origins of the plan, the work that has been done to date, who participated, and 
(optionally) the process that was used. Relate the planned actions to other existing or 
concurrent measurement activities within your organization and (if appropriate) in 
those of your customers or suppliers. 

Goals 

List and explain the goals that motivate and guide the activities under this plan. This 
section identifies three kinds of goals: (1) business goals, (2) measurement goals, and 
(3) the goals of this plan. 

• The business goals frame the importance of the program and the level of 
support to be provided by senior executives. 

• The measurement goals are more detailed and more specific. They guide 
the methods that will be used for collecting, storing, and using measured 
results. Each measurement goal should be identified and related to one or 
more of the business goals. 

• The goals for this plan are more operationally oriented. They specify the 
outcomes that are sought. What do you want to achieve? How will you 
know when you are done? Often the most effective way to express these 
goals is in terms of exit criteria or criteria for success. 

Scope 

Relate the measures that this plan implements to the measurement goals they serve 
and describe their range of application. Do the measures apply to new projects only? 
To development projects? To procurement actions? To maintenance projects? To 
contractors and subcontractors? To large or small programs? To only certain divisions 
or departments?...etc.? Who are the major stakeholders? Who will be affected by the 
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measurement practices, processes, and methods? Who will use the results? Identify 
the time span over which this plan is to be effective. 

Relationship to Other Software Process Improvement Efforts 

Describe how the measurement efforts in this plan relate to other process 
improvement activities at your organization. Explain how the efforts relate to any goals 
or actions your organization may have established with respect to the CMM, the 
Baldrige Award, or ISO 9000 certification. 

Relationship to Other Functional Activities 
Describe how the measurement efforts in this plan relate to (and interface with) other 
functional groups and activities at your organization, such as cost estimating, time and 
effort reporting, cost accounting, procurement, technical writing, and quality 

assurance. 

3.     Implementation 
Describe the actions that are to be taken to implement the measures identified in 
Section 2. For example, will you use pilot projects? Will you use focused subsets of 
the measures, perhaps locally, before broad organization-wide implementation? Put 
together a comprehensive strategy that addresses all aspects of implementation, 
including the tools and training needed to introduce, use, and sustain effective 
measurement. Address data-storage issues and the steps for incorporating these 
measures and measurement practices into your organization's policies, procedures, 
practices, and training curricula. Describe how you will use the measured results and 
how you will obtain feedback to continuously improve the measurement processes. 
Describe your plans for identifying problem areas and successes, and for publishing 
success stories and lessons learned. The subsections that provide this information 
are described below. 

Activities, Products, and Tasks 

Describe how the effort is to be accomplished. Partition the effort into manageable 
activities, products, and tasks that can be used as a basis for planning, reporting, 
management, and control. For each activity, product, or task, state the objective and 
identify the principal subtasks. Identify all sequences and dependencies that affect 
either the schedule or assignment of resources. Where possible, identify the entry and 
exit conditions that will determine start and completion of the task. 

Schedule 

Describe when each of the activities, products, or tasks is to be accomplished. Use 
Gantt charts, PERT charts, or alternative displays where appropriate to describe 
sequences and dependencies. Translate key actions, events, and deliverables into 
milestones so that performance can be tracked against plans. 
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Resources 

Describe the resources that are being allocated to this effort. Address personnel, 
money, facilities, teaming plans, computer resources, and so forth. 

Responsibilities 

Name the individuals or groups that will be responsible for overseeing, planning, 
implementing, managing, approving, and funding this effort. Assign responsibility and 
authority for acquiring tools, for training, and for implementing and operating 
databases. 

Measurement and Monitoring 

Describe how the progress of implementing these measures will be measured, 
analyzed, and reported. Identify replanning points and describe how significant 
schedule deviations or changes and revised funding needs will be handled. 

Assumptions 

Identify the key assumptions upon which this plan is based. Key assumptions are 
ones which, if not satisfied, pose risks for successful implementation. 

Risk management 

Describe how you will identify, assess, track, and do contingency planning for the risk 
factors associated with the measurement implementation efforts covered by this plan. 
Describe the actions that will be taken to monitor the assumptions, and provide 
mechanisms for reacting if assumptions are not met. Also, identify all places where 
planned schedules and resources differ from estimates and describe the actions that 
are being taken to make the planned outcomes achievable. 

Sustained Operation 
Describe the actions that will be taken to sustain and use the measures implemented 
in Section 3. Assign resources and responsibilities and make provisions for continuing 
evolution. Describe the practices that will be used to evaluate and monitor the 
effectiveness of the measures and to assess their business value and their effects on 
organizational performance. Alternatively, if appropriate, provide direction and 
resources for preparing an operational plan for sustaining the collection, use, 
retention, evolution, and evaluation of these measures. 
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Appendix C: Example—A Practitioner's Report 

This appendix provides a copy of a paper that was presented by Mark Roberts of McDonnell 
Douglas Corporation at the 1996 Software Engineering Process Group Conference in 
Atlantic City, New Jersey [Roberts 96]. The paper describes the experiences Mark and his 
organization encountered as they began applying control charts and statistical process 
control methods in software settings. The logical approach is instructive, as are the false 
starts and lessons learned. The paper is well worth reading. Understanding the issues that it 
illustrates will help speed your success in bringing stability and predictability to your own 
software processes. It offers a good example of using the principles of statistical process 
control to improve one's ability to separate authentic signal from random noise. 

We thank Mark Roberts and the McDonnell Douglas Corporation for granting permission to 

reproduce the paper here. 
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Experiences in Analyzing Software Inspection Data 

Mark A. Roberts 
Software Engineering Process Group 

McDonnell Douglas Aerospace 
McDonnell Douglas Corporation 

St. Louis, MO 
mrobertsl @ mdc.com 

May 21,1996 

C.1     Background 
The software engineering community at McDonnell Douglas Aerospace (MDA) consists of 
over 1000 engineers working on a large variety of missile, aircraft, ground systems, and 
other support systems projects. In support of continuous improvement aimed at reducing 
costs and maintaining a competitive position, MDA management committed in 1991 to a 
software process improvement initiative based upon the Software Engineering Institute's 
Capability Maturity Model (SEI CMM). An SEI-licensed software process assessment 
conducted in early 1992 assessed a small community of avionics projects at capability 
maturity Level 2. Soon thereafter, MDA established an organizational goal to achieve 
maturity Level 3 in 1994. This goal was flowed down to our major aircraft and missile 
programs. Responsibility for establishing organizational processes and training to support 
our efforts to achieve Level 3 was assigned to our Software Engineering Process Group. 
The SEPG established an Organizational Standard Software Process (OSSP) to serve as 
the primary vehicle for process improvement. MDA's implementation of an OSSP was multi- 
faceted. Company-wide policies were written to address the commitment practices of the 
Capability Maturity Model (CMM). A standard life-cycle model and a set of process 
requirements were documented in the Software Engineering Process Manual (SEPM). 
Process and product metrics were documented in the Software Engineering Metrics Manual 
(SEMM). The SEPG also developed guidebooks to serve as primers for such processes as 
peer reviews, configuration management, and software development planning. One of the 
major sections in our guidebook was devoted to software peer reviews. The peer review 
guidebook contains the following sections: 

• an overview of the MDA Software Peer Review Process 

• definition of roles and responsibilities of participants 

• a process flow and textual description of the actual peer review process, 
including inspections, walkthroughs, and colleague reviews 

• a list and description of metrics to be collected, and 

• guidelines on tailoring the process for specific projects. 
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A peer review training course was also developed by the SEPG to support dissemination of 
the process throughout the organization. The course consists of five hours of training on 
company time and includes an overview of the process followed by two lab sessions, where 
a facilitated inspection is conducted. The training is required for all MDA software engineers, 
software quality engineers, and software contractors. The peer review process has been 
used on many MDA software projects since early 1992. Our process required projects to 
collect summary data on defects found during peer reviews. 

C.2    Problem 
MDA software projects have been performing inspections and collecting defect data for 
several years. The peer review process was developed to support MDA's efforts to achieve 
SEI Level 3, so most of our projects included it as part of their defined software development 
process. The projects have been stockpiling the defect reports and have not used the data 
to (1) measure the effectiveness of the peer review process, or (2) indicate areas for 
improvement in the peer review process or the software development process. They have 
the data on paper, but don't know how to interpret the data and don't understand potential 
uses for the data. This situation causes people to question why they are collecting data in 
the first place. Our next challenge is that the SEPG has developed plans to move toward 
SEI Level 4. The findings from our Level 3 assessment indicated the need to look at the 
Quantitative Process Management KPA. Our plans relative to this KPA included training of 
the SEPG in statistical process control techniques and implementation of a comprehensive 
organizational metrics program. Our metrics team needed some "live" data so we could gain 
some experience in analyzing metrics. We also wanted to assess the benefits of the 
processes we implemented during our Level 3 activities to support our advancement to 
Level 4. 

In 1995, MDA established a metrics team to support our SEI Level 4 efforts relative to 
organizational metrics. One of the first tasks of this team was to develop a survey for 
distribution to all MDA software personnel to help develop goals for metrics activities. 
Results of the survey indicated that the primary use of the metrics in the software 
engineering organization was progress monitoring. However, respondents indicated a desire 
to get more from metrics than simple software development progress or percent complete. 
Because the majority of the respondents were developers, these results indicated the need 
for metrics that benefit software developers directly. One of the common themes we 
discovered from the respondents was that the reasons behind collecting the metric data 
needed to be well understood. Many respondents recognized the benefits of collecting 
metrics but were not realizing them, while others wanted to see the benefits before "buying 
in" to their use. The metrics team then reviewed the metrics defined in our software metrics 
manual to determine the best starting point to help software engineers realize the benefits of 
collecting and analyzing metric data. Our metrics team identified peer review data analysis 
as a way to provide immediate metrics support to many of our software development 
projects. 
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C.3    Selecting a Set of Data 
We began an initiative to develop a process to support analysis of inspection data during the 
software development cycle. Our team selected two projects to provide defect data for 
analysis. These projects had an existing history of defect data and were either in the latter 
stages of a software development effort or had just completed a software release. This 
paper describes our experiences in analyzing the data from the first of these two projects. 

The project we identified as the subject of our analysis provided data from 212 inspections 
performed over a period of nine months. These inspections covered detailed design, code, 
and unit test plans. Figure C-1 shows the Inspection Report used to document summary 
information for each inspection, and Figure C-2 shows the Defect Report used to record 
each defect found during an inspection. The highlighted areas indicate the data provided to 
the metrics team. 

INSPECTION REPORT 
PROJECT MAJOR RELEASE PHASE WORKPACKAGE INSPECTION # 

PRODUCT DESCRIPTION 

INSPECTION 
DATE ITME LOCATION METHOD: D MEETING D ROUTING 

Author 
Moderator 

Reader 
Tech Lead 

Tester 
Quality 

Traceability 

# of Inspectors 

Prep. 
Time 

I 

Start Time: 
F.nri Timp; 

Total Group Insp. Time 
Tntal Preparation Timp; 

Total Time Used: 

Reinspection Required? 
EsL Rework Hours: 

Est. Rework Due Date 
Actual Rework Hours: 

Actual Completion Date 

Distribution Date 
# of Units Inspected 
# of Pages Inspected 
# of Lines Inspected 

# SLOC Inspected 

Tech Lead Signoff 
Quality Signoff 

Figure C-1: Inspection Report 
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PROJECT MAJOR RELEASE PHASE WORK PACKAGE INSPECTION* 

PRODUCT DESCRIPTION 

PRODUCT DEFECT REWORK 

Type Page Line 
Unit 
Type Code Severity Category 

Origin 
Phase 

Defect Description 
Complete Verified 

Figure C-2: Defect Report 

We worked independently from the project that provided us the defect data, with no insight 
into the product under development or their software development process. We only had the 
project's documented peer review process and the summary inspection reports - we did not 
have access to the detailed defect reports. One advantage of using the data provided was 
that we could be completely objective in our analysis. We did not know which engineers 
developed the information that was inspected or who participated in any of the peer reviews. 

C.4    Data Analysis—Round 1 
Microsoft Excel provided the capabilities we needed to reduce and analyze the data, so we 
loaded all of the data into Excel spreadsheets. The summary data included the Inspection 
ID, date, number of defects by defect code (or category) and size of the review package for 
each inspection. This project did not use source lines-of-code count for the code inspection - 
they had a program that counted a total "number of lines" for the entire review package. This 
count included textual paragraphs, code, and comments. Due to the unavailability of source 
lines-of-code (SLOC) counts, we selected "number of lines" as a means of normalizing the 
data from the inspections. We first developed a pie chart (Figure C-3) depicting the ratio of 
each defect category to the total number of defects. The pie chart indicated the defect 
categories that occurred most often in the inspections, but since the project used 15 defect 
categories, those categories with few total defects were lost in the noise. Normalizing the 
data using number of lines allowed us to develop an attribute control chart (a c chart) for the 
number of defects per line. Attribute control charts are used to determine if a process is "in a 
state of control". The c charts we developed (Figure C-4) looked reasonable - they showed 
that most of the inspections resulted in a normalized "number of defects" within the control 
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limits. But what did they mean? We decided we needed some help, so we enlisted the 
services of MDA's Variability Reduction (VR) group whose purpose is to provide training and 
facilitate the use of statistical tools to support process improvement throughout the 
organization. The VR group works primarily with production processes at MDA, so this study 
provided them an opportunity to apply statistical process control techniques to software. 

Design Ineomptel 

Understandabillty 

Logic 

Figure C-3: Code Inspection Pie Chart 

0.000 

I "—"Defects per Inspection —■- Lower Control      -»—Upper Control      | 

Figure C-4: Code Inspection C Chart 
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Our VR experts pointed out that c charts are only valid if the sample size is the same from 
inspection to inspection. This situation is very unlikely in software inspections, because it 
would require reviews to be conducted on the same size of review material, that is, always 
inspect the same number of SLOC or the same number of paragraphs, pages, etc. 
Therefore we needed to create u charts. U charts are another type of attribute control charts, 
but, unlike c charts, can be used when the sample size varies. The VR group also 
suggested that we step back and develop Pareto charts of the data to help determine how to 

proceed. 

C.5    Data Analysis—Round 2 
After the false start, we sat back to determine what we wanted to learn from the data. We 
also decided that we had too much data to handle and should break it down into more 
manageable pieces. The team decided to concentrate on the 124 code inspections and save 
the detailed design and test case reviews for later analysis. We chose code inspections as 
our first category because they are performed on more MDA projects, and they would 
provide more information on actual software implementation problems. 

First, we wanted to identify the "heavy hitters" and/or the "vital few" defect categories. So we 
created a Pareto Chart (Figure C-5) and determined that of the 15 defect categories, the 
"heavy hitters" were Standards, Logic and Cosmetic. Of the 1896 defects found during code 
inspections 704, or 37% were categorized as Standards or Cosmetic defects. This data 
caused us to ask, "Why did they find so many standards errors?" A conference with the 
project's peer review process owner revealed that (1) they had A LOT of documentation and 
coding standards, (2) their customer agreed to this list of standards, and (3) many of the 
software developers were relatively new to the project and had not been fully trained in use 
of the standards. This Pareto chart did not, however, give us the "vital few." High quantity 
doesn't necessarily mean most critical; therefore, we needed to use severity codes to weight 
the defects. 

Second, we wanted to answer the question, "Is the process in control?" In other words, "Is 
the development process consistent regardless of the size of the product being reviewed?" 
To help answer this question we created attribute control charts (u charts) for the top three 
defect categories. Upper and lower control limits (UCL and LCL) and centerlines (U bar) 
were calculated for all the code inspections which resulted in the plot shown in Figure C-6. 
In this figure the defect data is represented by (U). 

From the u chart of logic defects we were able to determine that only six percent of the 
inspections found more logic errors than expected, indicating that, for the most part, the 
process is in control. We identified each inspection where the defects spiked above the UCL 
and provided the data to the project managers. To determine the root cause for those 
instances when the number of defects spiked above the UCL, project personnel reviewed 
the detailed inspection defect reports to look for changes or breakdowns in the development 
process, resources, personnel, etc., that could have caused the process to be out of control. 
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C.6    Round 2 Wrap-Up 
As a result of the second round of data analysis, we determined that the extraordinarily large 
number of standards and cosmetic defects were probably skewing our data and preventing 
us from concentrating on defects that may affect the functionality of the software. We 
obtained a coding standards checker and provided it to the project to help reduce the 
standards defects in the future. The project began an evaluation of tools such as "pretty 
printers" to aid in detecting or eliminating cosmetic errors prior to the peer review. Based on 
the data we provided to them, the project decided to reduce the number of defect categories 
by combining "understanding" with "more detail", "design incomplete" with "higher level 
design", and "requirements deficiency" with "requirements missing". Both the project and our 
metrics team felt that fewer numbers of defect categories will reduce future effort in 
analyzing the data, while still providing enough insight into the process. 

C.7    Data Analysis—Round 3 
For our next round of data analysis we decided to do some additional investigation of the 
current data based on what we learned from the previous activities. First, we combined the 
defect categories to match the process changes made by the program and then reran the 
Pareto charts. This produced very little change; however, the charts had a much cleaner 
look due to the reduced number of defect categories. Although the charts looked better, they 
didn't tell us anymore than the original charts. 

To achieve our goal of determining the "vital few", we decided to weight the defects based 
on the minor and major severity classifications for the combined defect categories. In our 
initial analysis, we simply added the number of major and minor defects to determine a 
single count for each category. Next, we ran Pareto charts with major defects carrying three 
times the weight of minor defects. This weighting typically moved logic errors in front of the 
standards and cosmetic errors, which we expected to see; however, the Pareto charts still 
did not provide enough emphasis on the defects that affected the functionality of the 
software. We then ran the Pareto charts again - this time using a weighting factor of ten for 
the major defects. This made a significant difference. The resulting charts (Figure C-7) 
emphasized the defect categories that would be most important during each software 
development phase, moving defects like standards and cosmetic into the 4th and 5th 
positions. Using a weighting factor of ten we felt that we finally discovered our "vital few". 

While we continued our analysis, research by the project process personnel of the 
inspections where the logic errors exceeded the UCL, showed the high number of defects 
could be attributed to special causes (for example, new software personnel and specialized 
software modules). Based on the theory of control charts, we eliminated those 12 
inspections and recalculated the upper and lower control limits and the centerline for the 
remaining logic errors. This new u chart showed only two inspections with errors outside the 
control limits. Data from the original u chart is shown in Figure C-8. It has been plotted as a 
short-run attribute control chart, where UCL and LCL (+3.00 and -3.00) for each inspection 
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have been normalized to improve readability. Figure C-9 depicts the same data after 
elimination of the 12 inspections with "special causes". 

Combined/Weighted (10) Code Peer Reviews 
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Figure C-7: Combined/Weighted (factor of 10) Code Inspections 

Figure C-8: Short-Run Attribute Control Chart for Logic Errors 
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Logic Errors plotted as Z-scores 

Figure C-9: Short-Run Attribute Control Chart for Logic Errors After Eliminating Reviews 
with Special Causes 

Figure C-9 shows that the project's process is in control because all the points are randomly 
distributed within the upper and lower control limits (+3.00 and -3.00). 

We then calculated the number of "escaped" defects. This is a metric that can be readily 
computed from summary defect data. Our definition of an escaped defect is one that should 
have been found in an inspection during an earlier software development phase. This 
means that requirements defects found during design or code inspections are considered 
escapes, and design defects found during code inspections are also escapes. The chart 
below shows the total number of defects found during each software development phase 
where peer reviews were held. Of the total 3769 defects found, 123 defects (those below the 
diagonal [9 + 1 +113]) were classified as "escapes". The ratio of escaped defects to total 
defects found was computed as 3.26%. 
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Found 
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Requirements 
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Code 1 113 1935 

Figure C-10:   Total Number of Defects Found, with Escaped Defects Shown Below the 
Shaded Line 
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C.8    Round 3 Wrap-Up 
We consulted with our VR expert again to review the analysis. As our understanding t f the 
problem increased, we became concerned about the validity of the statistical method we 
had employed. The assumption associated with u charts is that the number of defects fc md 
in a given inspection follow a Poisson distribution. We wanted to know if tests on the aci lal 
distribution were necessary. He told us that the attribute of our process that makes it 
applicable to u charts was the fact that there are many opportunities for defects with a ve y 
small probability that a given line will have one or more defects. This definitely applie. 
because the measured defects per line is about 0.01 when all of the defects are counted. It 
is even smaller when the number of defect categories is restricted. This meeting gave us 
confidence that we were on firm theoretical grounds. 

C.9    Conclusions 
Our team felt they obtained some valuable information from this exercise. We determined 
that defect data from peer reviews can be used to highlight areas for process improvement. 
We also found that if we assume a stable peer review process, we can determine a range 
for the number of defects we expect to find during a peer review, based on the size of the 
review package. This concept can be best applied when the same software group has gone 
through a complete software development life cycle and will be repeating the process again 
on another development effort. We also found that the project was very interested in the 
reports we developed. They initiated changes in both their software development process 
and their peer review process based on the information we gleaned from their data, adding 
the use of a code standards checker prior to the peer review and combining some of the 
defect categories to reduce the time spent reviewing the material. Another important aspect 
of this study is that we showed that an organizational group, the SEPG, can develop a 
process that supports process improvements on individual projects without much effort on 
the part of project personnel. 

C.10  Future Plans 
The metrics team has planned several activities as a follow-up to this effort. Our plans 
include development of a standard peer review data analysis process and extension of the 
process to other types of software defects, such as those found during testing and after 
delivery. First, we plan to analyze inspection data from the second project to determine if the 
analysis techniques we used can be used on projects developing different types of software 
applications. If we perform a similar analysis on a set of data from the second software 
project and can recommend improvements to their processes, we will develop a 
documented process for application to other MDA software projects. To assist the transition 
of the process to our software organization, we will investigate tools that can support the 
collection and analysis of the defect data. Members of the VR group have offered to develop 
an application for analyzing software peer review defects using Statistical Analysis System 
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(SAS). We are also investigating automation of the defect data entry, collection, and 

analysis process through the use of Excel macros. 

After development of a peer review data analysis process we will begin looking at software 
errors found in the later stages of the software development process. We plan to develop an 
enterprise-wide approach to collecting software errors during software and system-level 
testing and after delivery. We then plan to develop techniques that will help us analyze 
software errors detected throughout the software development process. We can then use 
this process to measure the impacts of process improvements on product quality. 
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attributes 4 
compliance 26 
measurable 44 
selecting for measurement 42 

attributes data 77, 97, 99 
area of opportunity for 97 

average range 85 

B 
bar charts 129,141 
business goals 4 

C 
c chart 98 

example 208 
Camp-Meidell inequality 159 
capability 17, 28, 29,108,118, (see also process 

capability) 
capability analysis 110 
capability index 112 
Capability Maturity Model 5 
capable 5, 10, 17, 29,110,113 
cause-and-effect diagrams 129,135 
center line 74, 85 
central limit theorem 161,162 
central tendency 84 
chance cause 20 

checklists 48, 51 
for action planning 55 
for counting problems and defects 49 
for measurable process entities 43 

CMM5 
collecting data 59-62 
common cause variation 21, 70, 75, 128, 159 
common causes 128 
compliance 17, 24-28, 122 

entities and attributes 26 
measures 26 
things to examine 123 

compliance data 61 
confidence intervals 111 
contextual information 19-20, 26 
control 9,15 
control charts 23, 71, 74, 84, 87, 99 

c charts 99 
examples 

c chart 208 
u chart 103,104, 210 
X-bar and R 71, 73, 87,174,177 
X-barandS178 
XmR 24, 92, 95,106, 107,168, 176, 182 
Z chart 105, 212,213 

for attributes data 97-107, 181 
for variables data 84-92 
np charts 98 
p charts 98 
reasons for 76 
structure 74-76 
u charts 99 
with limited data 162 
X-bar and R charts 84-87 

calculating control limits for 85 
factors for control limits 85 

XmR charts 89-92, 99, 106 
Z charts 105 

control limit 
for moving range 92 

control limits 74, 82,104,158,162-166 
for u charts 101,102 
for X-bar and R charts 84,173 
for XmR charts 89, 91, 94 
revising 164 
updating 165 

control-flow diagrams 37 
controlled 7 
controlled process 21 
cost of quality 184 
Cp112 
Cpk112 
customer requirements 29 
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D 
data 

aggregating 191 
collecting 59-62 
comparing 191 
criteria for validating 154 
problems when aggregated 184 
self-consistent 156 
synchronized 155 
unsynchronized 155 
validity 156 
verification 154 
well-defined 189 

data collection guide 60 
databases 

management 65-66 
operation 65 
planning 63-64 

design goals 64 
logistical and timeline issues 64 
measurement definitions 63 
multiple databases 63 
rules and policy issues 64 

defining process measures 46-47 
definition frameworks 51 
dispersion 84 
distance to the nearest specification 114 
distributions 

avoiding assumptions 75 
binomial 98 
empirical 28, 69, 95 
mixtures of 96 
normal 111, 159, 161,162 
Poisson 98, 100,102 
preserving order of measurements 60 
symmetric 159 

empirical distributions 95 
empirical rule for the dispersion of data 160 
entities 

checklist for 43 
compliance 26 
examples 125 
selecting for measurement 42 

enumerative studies 68, 147-149 
extrapolation 153 

fishbone charts 135 
fraction nonconforming 110-112 

generic process model 36 
goals 2, (see also business goals) 
grand average 85 
granularity 167 

H 
histograms 95, 129, 138 

cell boundaries for 139 
homogeneous subgroups 171 

I 
improvement 17, 30, 40, 118, 124 

where to look when seeking 124 
in control 69 
independent and identically distributed random 

variables 107, 111, 153 
index of dispersion 112 
individuals and moving range charts (see XmR 

charts) 
inferences 68 

extrapolation from 153 
instability 

detecting 78 
tests for detecting 79 

interval estimators 112 
confidence intervals 111 
prediction intervals 112 
tolerance intervals 112 

Ishikawa charts 129,135 

key process issues 35 

law of large numbers 22 
loss function 185, 186 
lower control limit 85 

M 
mathematical modeling 192 
measurement 

goals 45 
operational activities of 58 

measurement action plan 
template for 199 

measures 
of compliance 26 
selecting and defining 39-51 

mental models 35-37, 42, 187 
moving range 89 

N 
natural process limits 23, 90, 92, 94, 96,108, 109 
noncompliance 

as an assignable cause 122 
nonrandom behavior 79 
normal distribution 111,159,161,162 
np chart 98 

O 
objectives 

process improvement 10 
process management 3 
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process measurement 9 
product engineering 3 
project management 3 

operational definitions 39,189 
criteria for 47 
examples 48 

out of control 72 
out-of-control process 

example 73 
out-of-control situations 

detecting 78 

P 
p chart 98 
Pareto chart 129, 142 

example 143, 210, 212 
performance 4, 16,17, (see also process 

performance) 
Poisson model 100 
predictability 82, 157 
predictable 21 
prediction intervals 112 
predictive validity 157 
process 5-6,12 

common issues 38-39 
process attributes 4 

examples 18, 44 
process capability 5,17, 28 

evaluating 108 
histogram 109 
procedure for assessing 115 

process compliance 17 
process compliance data 61 

using surveys to gather 62 
process entities 

examples 43 
process improvement 17 

objectives for 10 
process instability 79, (see also instability) 
process issues 4 

common characteristics 38 
steps for identifying 34 

process management 7,11, 20,40, (see also 
software process management) 

objectives 3 
perspectives 15 
responsibilities 11, 34 

process measurement 
objectives 9 
principles 187-192 

process measures 18, 42 
defining 46-47 
selecting 40-45 

process models 35 
process performance 16, 17,18,124 

inputs that affect 125 
measuring 18 

process performance data 60 
context for 61 

t jasurement stability 61 
funding 61 
ime sequence 60 

pro' ass stability 5, 16, 20, 69 
evaluating 69-83 

prcoesses 
selecting measures for 40-45 

pr xiuct attributes 4, 5 
examples 18, 44 

F oduct engineering 
objectives 3 

oroduct measures 18, 42 
oroject issues 4 
project management 8, 11 

objectives 3 
responsibilities 11 

R chart 72, 86 
rational sampling 169 
rational subgrouping 72, 82,170,180 
resource attributes 

examples 18 
responsibilities 

process management 11, 34 
project management 11 

retaining data 62 
roles of measurement 117 
root causes 209 

tools for finding 128 
rounding 167 
run charts 129, 132 

Schart 85,178 
scatter diagrams 129,131 
sigma 72, 75 

for individual values 92 
six-sigma quality 184 
software process management 6, 12 

objectives 7-10 
responsibilities 7-10 

solutions 
tools for finding 128 

specification 
limits 110,113 
tolerance 113 

stability 16, 20, 21, 23-24, 69, 70, 117, (see also 
process stability) 

concepts and principles 70 
importance of 69 
investigation process for 80-83 

stable 7, 69, 70 
stable process 22, 70, 96 
standard deviation 72 
statistical control 7, 20, 69, 70, 153, 166 
statistical inferences 68 
statistical process control 23, (see also statistical 

control) 
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Steps for collecting and analyzing measurement 
data 148 

subgroup size 86, 90, 164 
subgrouping (see also rational subgrouping) 
subgroups 72, 85 
synchronized measurements 155 

T 
Taguchi 185 
Tchebycheff's inequality 159 
tolerance intervals 112 
tools for finding root causes and solutions 128 

U 
u chart 98, 99 

example 103, 104,210 
unusual patterns 79 
upper control limit 85 

V 
variable control limits 104 
variables data 77 
variation 21 

assignable cause 7, 9, 21, 22, 70,159 
common cause 21, 70, 128,159 

voice of the customer 29 
voice of the process 23, 109 

W 
well-defined data 18, 189 
world-class quality 184 

X 
X-bar and R charts 71, 73, 84 

example 174, 177 
factors for control limits 85 

X-bar and S charts 
example 178 

XmR charts 89, 91, 98, 106,183 
example 92, 95, 106,107, 168, 176, 182 
for continuous data 89-92, 94 
for discrete data 93-95 

Z 
Z chart 105 

example 105,212,213 
zero defects 184 
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